Controllable formation of aromatic nanoparticles in a three-dimensional hydrodynamic flow focusing microfluidic device

Liguo Jiang, a Weiping Wang, b Ying Chau a,b and Shuhuai Yao * a,c

a Division of Biomedical Engineering, Bioengineering Graduate Program,
b Department of Chemical and Biomolecular Engineering,
c Department of Mechanical Engineering,
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

Corresponding author. E-mail: meshyao@ust.hk

Fig. S1 Formation of aromatic NPs in a 2DHFF device. Central stream: 400 µM FTAEA in DMF/water (75/25, volume ratio) solution. Side streams: nanopurified water. (a) At the beginning of the experiment. (b) After 3 minutes running of the experiment. Aggregates severely stick on channel surfaces.
Fig. S2 Cross section images of 3D focused streams at different flow conditions, taken at 40 µm downstream at cross section B in Fig. 1b. Flow rates in experiments: Q_{bf1}-Q_{bf2}-Q_{Sa}-Q_{Wt} µl/min (a) 1.1-1.1-0.3-20; (b) 1-1-0.5-20; (c) 0.85-0.85-0.8-20.
Fig. S3 DLS measurements of self-assembled FTAEA NPs at different FRR conditions with the sample stream containing an FTAEA initial concentration of 10 mM.