Novel Atom Economic Reaction: Comprehensive Utilization of S-Alkylisothiouronium Salt in the Synthesis of Thioether and Guanidinium Salt

Pengchao Gao, Penglin Leng, Qi Sun, Xin Wang, Zemei Ge* and Runtao Li*

State key laboratory of natural and biomimetic drugs, School of Pharmaceutical Sciences,
Peking University, 38 Xueyuan Road, Beijing, 100191, China
E-mail: zmge@bjmu.edu.cn; lirt@mail.bjmu.edu.cn;
Fax: 86 10 82716956; Tel: 86 82801504
1. Experimental part

All reagents were commercially available. The waste free reactions were monitored by thin layer chromatography. 1H NMR spectra were recorded on 400MHz Bruker spectrometers with TMS as an internal standard.

Compounds 1a-f, 2a-c, 3a-c, 4a-r, 5a-e, 6, 7, 8, 9, 10, 11, 12 are known. 12 is a new compound. Characterization data (1H NMR, 13C NMR, MP, ESI-MS) are reported below.

Typical procedure for the symbiotic reaction

To the mixed solvent (10 mL, H$_2$O/EtOH = 1:1) was added the S-alkyliothiouronium salt (4.4 mmol), the amine (4.0 mmol) and the Michael receptor (4.0 mmol), TEA (4.0 mmol). The mixture was stirred at 30 °C for 6 h, then 5 mL H$_2$O was added and the mixture was extracted with EtOAc (15 mL \times 3). The remaining aqueous layer was concentrated under reduced pressure using a rotary evaporator and the resulting solid was washed with a small amount of ethanol, then recrystallized from hot water to give the corresponding guanidinium salt (5). The combined organic layer was dried over anhydrous Na$_2$SO$_4$ and concentrated under reduced pressure, and the residue was purified by column chromatography (petroleum ether/ethyl acetate) to afford the corresponding thia-Michael addition product (4).

Methyl 3-(benzylthio)propanoate(4a)

\[
\begin{align*}
\text{CH}_3\text{C}=\text{O} & \quad \text{S} \\
\text{H} & \quad \text{C}_6\text{H}_5
\end{align*}
\]

Isolated in 83.4% yield, yellow oil, Lit19. 1H NMR (400MHz, CDCl$_3$): δ 7.25 (m, 5H), 3.66 (s, 2H), 3.61 (s, 3H), 2.61 (t, 2H, J = 7.3Hz), 2.48 (t, 2H, J = 7.3Hz). 13C NMR (100MHz, CDCl$_3$): δ 172.37, 138.05, 128.85, 128.57, 127.11, 51.80, 36.30, 34.29, 26.19

3-(Benzylthio)cyclohexanone(4b)

\[
\begin{align*}
\text{CH}_3\text{C}=\text{O} & \quad \text{S} \\
\text{H} & \quad \text{C}_6\text{H}_5
\end{align*}
\]
Isolated in 82.3% yield, yellow oil, Lit19, 1H NMR (400MHz, CDCl$_3$): δ 7.18 (m 5H), 3.67 (s, 2H), 2.85 (m 1H), 2.57 (m, 1H), 2.26 (m, 3H), 1.99 (m, 2H), 1.61 (m, 2H). 13C NMR (100MHz, CDCl$_3$): δ 208.68, 137.93, 128.75, 128.62, 127.16, 47.80, 41.97, 40.95, 34.93, 31.28, 24.12

3-(Benzylthio)propanenitrile(4c)

Isolated in 80.1% yield, yellow oil, Lit19, 1H NMR (400MHz, CDCl$_3$): δ 7.24 (m, 5H), 3.69 (s, 2H), 2.54 (t, 2H, $J = 7.2$Hz), 2.38 (t, 2H, $J = 7.2$Hz). 13C NMR (100MHz, CDCl$_3$): δ 137.43, 128.93, 128.79, 127.48, 118.50, 36.30, 26.64, 18.61

Methyl 3-(methylthio)propanoate(4d)

Isolated in 61.8% yield, pale yellow oil, Lit19, 1H NMR (400MHz, CDCl$_3$): δ 3.63 (s, 3H), 2.70 (t, 2H, $J = 7.4$Hz), 2.56 (t, 2H, $J = 7.4$Hz), 2.05 (s, 3H). 13C NMR (100MHz, CDCl$_3$): δ 171.38, 50.75, 33.22, 28.06, 14.46

3-(Methylthio)cyclohexanone(4e)

Isolated in 72.6% yield, yellow oil, Lit19, 1H NMR (400MHz, CDCl$_3$): δ 2.90-2.93 (m, 1H), δ 2.61-2.66 (m, 1H), δ 2.26-2.34 (m, 3H), δ 2.05-2.10 (m, 5H), δ 1.63-1.68 (m, 2H). 13C NMR (100MHz, CDCl$_3$): δ 208.73, 47.50, 44.12, 40.86, 30.90, 24.05, 13.48

3-(Methylthio)propanenitrile(4f)

Isolated in 58.9% yield, colorless oil, Lit19, 1H NMR (400MHz, CDCl$_3$): δ 2.71 (t, 2H, $J = 7.5$Hz), 2.60 (t, 2H, $J = 7.5$Hz), 2.13 (s, 3H). 13C NMR (100MHz, CDCl$_3$): δ 117.39, 28.65, 17.43, 14.58

Methyl 3-(ethylthio)propanoate(4g)
Isolated in 68.5% yield, pale yellow oil, Lit20, 1H NMR (400MHz, CDCl\textsubscript{3}): \(\delta\) 3.63 (s, 3H), 2.71-2.75 (m, 2H), 2.48-2.55 (m, 4H), 1.17-1.21 (m, 3H). 13C NMR (100MHz, CDCl\textsubscript{3}): \(\delta\) 172.45, 51.75, 34.65, 26.49, 25.94, 14.64

3-(Ethylthio)cyclohexanone(4h)

\[
\begin{array}{c}
\text{O} \\
\text{S} \\
\text{S} \\
\end{array}
\]

Isolated in 81.5% yield, brown oil, Lit21, 1H NMR (400MHz, CDCl\textsubscript{3}): \(\delta\) 3.03 (m, 1H), 2.61-2.65 (m, 1H), 2.50 (q, 2H, \(J = 7.4\)Hz), 2.28-2.30 (m, 3H), 2.06-2.09 (m, 2H), 1.19 (t, 3H, \(J = 7.4\)Hz). 13C NMR (100MHz, CDCl\textsubscript{3}): \(\delta\) 207.93, 47.14, 41.34, 39.96, 30.55, 23.40, 23.23, 13.78

3-(Ethylthio)propanenitrile(4i)

\[
\begin{array}{c}
\text{NC} \\
\text{S} \\
\text{S} \\
\end{array}
\]

Isolated in 77.1% yield, colorless oil, Lit22, 1H NMR (400MHz, CDCl\textsubscript{3}): \(\delta\) 2.74 (t, 2H, \(J = 7.1\)Hz), 2.57 (m, 4H), 1.22 (t, 3H, \(J = 7.4\)Hz). 13C NMR (100MHz, CDCl\textsubscript{3}): \(\delta\) 118.52, 59.57, 26.00, 18.86, 14.56

Methyl 3-(cyclopentylthio)propanoate(4j)

\[
\begin{array}{c}
\text{S} \\
\text{S} \\
\text{O} \\
\text{O} \\
\end{array}
\]

Isolated in 68.1% yield, pale yellow oil, Lit19, 1H NMR (400MHz, CDCl\textsubscript{3}): \(\delta\) 3.72 (s, 3H), 2.81 (t, 2H, \(J = 7.4\)Hz), 2.63 (t, 2H, \(J = 7.4\)Hz), 2.55 (m, 1H), 1.63 (m, 2H), 1.36 (m, 6H).13C NMR (100MHz, CDCl\textsubscript{3}): \(\delta\) 171.40, 59.57, 50.70, 33.71, 28.24, 25.94, 21.30

3-(Cyclopentylthio)cyclohexanone(4k)

\[
\begin{array}{c}
\text{O} \\
\text{S} \\
\text{S} \\
\end{array}
\]

Isolated in 75.7% yield, yellow oil, Lit19, 1H NMR(400MHz,CDCl\textsubscript{3}): \(\delta\) 2.98 (m, 1H), 2.60-2.65 (m, 1H), 2.45 (m, 2H), 2.27-2.33 (m, 3H), 2.04-2.08 (m, 2H), 1.62-1.67 (m, 2H), 1.49-1.57 (m, 2H), 1.24-1.29 (m, 3H), 0.82 (t, 2H, \(J = 7.0\)Hz). 13C NMR (100MHz, CDCl\textsubscript{3}): \(\delta\) 208.76, 48.16, 42.68, 40.90, 31.57, 31.04, 30.43, 24.18, 22.22

3-(Cyclopentylthio)propanenitrile(4l)
Isolated in 68.1% yield, pale yellow oil, Lit19, 1H NMR (400MHz, CDCl$_3$): δ 2.71 (t, 2H, J = 7.2Hz), 2.57 (t, 2H, J = 7.2Hz), 2.52 (m, 1H), 1.53 (m, 2H), 1.28(m, 6H). 13C NMR (100MHz, CDCl$_3$): δ 118.45, 30.90, 29.11, 27.59, 22.24, 18.91

Methyl 3-(allylthio)propanoate(4m)

Isolated in 71.2% yield, pale yellow oil, Lit23, 1H NMR (400MHz, CDCl$_3$): δ 5.61-5.80 (m, 1H), 5.05 (d, 2H, J = 18.7Hz), 3.62 (s, 3H), 3.08 (d, 2H, J = 6.9Hz), 2.66 (t, 2H, J = 7.2Hz), 2.52 (t, 2H, J = 7.2Hz). 13C NMR (100MHz, CDCl$_3$): δ 172.27, 134.13, 117.18, 51.69, 34.76, 34.37, 25.53

3-(Allylthio)cyclohexanone(4n)

Isolated in 82.8% yield, pale yellow oil, Lit23, 1H NMR (400MHz, CDCl$_3$): δ 5.91-5.64 (m, 1H), 5.11 (d, 2H, J = 13.9Hz), 3.19 (d, 2H, J = 7.1Hz), 3.09-2.95 (m, 1H), 2.68 (dd, 1H, J = 14.3, 4.5Hz), 2.45-2.25 (m, 3H), 2.18-2.01 (m, 2H), 1.78-1.60 (m, 2H). 13C NMR (100MHz, CDCl$_3$): δ 208.86, 134.23, 117.24, 47.92, 41.40, 40.97, 33.58, 31.36, 24.21

3-(Allylthio)propanenitrile(4o)

Isolated in 66.5% yield, pale red oil, Lit24, 1H NMR (400MHz, CDCl$_3$): δ 5.72 (m, 1H), 5.09 (d, 2H, J = 12.8Hz), 3.15 (d, 2H, J = 7.2Hz), 2.66 (t, 2H, J = 7.0Hz), 2.56 (t, 2H, J = 7.0Hz). 13C NMR (100MHz, CDCl$_3$): δ 133.63, 118.41, 118.01, 34.75, 25.86, 18.66

Methyl 3-(butylthio)propanoate(4p)

Isolated in 78.8% yield, pale yellow oil, Lit25, 1H NMR(400MHz,CDCl$_3$): δ 3.67 (s, 3H), 2.75 (t, 2H, J = 7.4Hz), 2.58 (t, 2H, J = 7.3Hz), 2.50 (t, 2H, J = 7.3Hz), 1.54 (m, 2H), 1.37 (m, 2H), 0.89 (s, 3H, J = 7.4Hz). 13C NMR (100MHz, CDCl$_3$): δ 172.37, 51.66, 54.69, 31.79, 31.59, 36.92, 21.90, 13.59

3-(Butylthio)cyclohexanone(4q)
Isolated in 72.4% yield, yellow oil, Lit25, 1H NMR (400MHz, CDCl$_3$): δ 2.62-2.65 (m, 1H), 2.48 (m, 3H), 2.28-2.31 (m, 3H), 2.07-2.09 (m, 2H), 1.64-1.67 (m, 2H), 1.48 (m, 2H), 1.32 (m, 2H), 0.84 (t, 3H, $J = 7.1$Hz). 13C NMR (100MHz, CDCl$_3$): δ 207.91, 47.25, 41.76, 39.95, 30.78, 30.66, 29.21, 23.26, 21.03, 12.64

3-(Butylthio)propanenitrile (4r)

Isolated in 63.5% yield, yellow oil, Lit26, 1H NMR (400MHz, CDCl$_3$): δ 2.71 (t, 2H, $J = 6.9$Hz), 2.51-2.58 (dt, 4H, $J = 14.6$Hz, 7.2Hz), 1.51 (m, 2H), 1.36 (m, 2H), 0.86 (t, 3H, $J = 7.2$Hz). 13C NMR (100MHz, CDCl$_3$): δ 117.38, 30.96, 30.49, 26.61, 20.86, 17.91, 12.60

1-Benzylguanidine hydrochloride (5a)

Mp 175-178 °C, Lit16,18, Mp 173-174°C, 1H NMR (400MHz, D$_2$O): δ 7.43 (m, 5H), 4.43 (s, 2H). ES ([M+H]$^+$) calculated: 150.24(100)

1-Benzylguanidine Half Sulfate (5b)

Mp 204-205 °C, Lit15, Mp 208-209 °C, 1H NMR (400MHz, D$_2$O): δ 7.38 (m, 5H), 4.42 (s, 2H). ES ([M+H]$^+$) calculated: 150.24(100)

1-Benzylguanidine Hydrobromate (5c)

Mp 110-113°C, 1H NMR (400MHz, D$_2$O): δ 7.42 (m, 5H), 4.43 (s, 2H). ES ([M+H]$^+$) calculated: 150.24(100)

2-Guanidinoacetic Hydrobromate (5d)
Carbonized at 284 °C, Lit.18 Carbonized at 280-284°C, 1H NMR (400MHz, D\textsubscript{2}O) : δ 3.69 (s, 2H). ES([M+H]+) calculated: 118.07(100)

Ismelin Half Sulfate (5e)

Mp 270-271 °C, Lit.17, Mp 276-281°C. 1H NMR (400MHz, D\textsubscript{2}O) : δ 3.36 (t, 2H, \textit{J} = 6.4Hz), 3.31 (m, 6H), 1.80 (s, 4H), 1.60 (s, 4H). 13C NMR (100MHz, D\textsubscript{2}O): δ 156.98, 55.10, 54.66, 36.28, 25.91, 22.99. ES([M+H]+) calculated: 185.26 (100)

Ethyl 3-(4-tert-butoxycarbonylaminomethylphenyl) acrylate (10)

Isolated in 20.5% overall yield as a brown oil, Lit.31, 1H NMR (400MHz, CDCl\textsubscript{3}) δ 7.59 (d, 1H, \textit{J} = 16.0Hz), 7.40 (d, 2H, \textit{J} = 8.2Hz), 7.22 (d, 2H, \textit{J} = 8.2Hz), 6.34 (d, 2H, \textit{J} = 16.0Hz), 4.71 (s, 2H), 4.19 (q, 2H, \textit{J} = 7.1Hz), 1.38 (s, 9H), 1.26 (t, 3H, \textit{J} = 7.1Hz). 13C NMR (100MHz, CDCl\textsubscript{3}); δ 166.99, 151.49, 143.21, 139.91, 132.33, 127.07, 126.66, 117.01, 81.68, 59.43, 48.22, 26.99, 13.31

Ethyl 3-benzylthio-3-(4-guanidinomethylphenyl) propanoate Hydrochloride (12)
Isolated by column chromatography (Ethyl Acetate/MeOH = 5:1) in 42.1% yield. Yellow solid, Mp 176.1-179.6°C. 1H NMR (400MHz, CD$_3$OD) δ 7.34 (m, 9H), 4.33 (s, 1H), 4.16 (q, 2H, $J = 7.1$Hz), 3.91 (m, 2H), 2.74 (m, 2H), 1.22 (t, 3H, $J = 7.1$Hz). 13C NMR (100MHz, DMSO-d_6): δ 170.43, 163.47, 137.78, 129.84, 129.55, 129.26, 128.87, 128.23, 127.77, 127.41, 60.54, 44.64, 42.25, 42.07, 35.31, 14.67, HR ESI MS m/z calcd for C$_{20}$H$_{25}$N$_3$O$_2$S, ([M+H]$^+$) 372.17451.

2. Spectra of compounds

1H NMR(400MHz, CDCl$_3$) of Compound 4a
13C NMR (100 MHz, CDCl$_3$) of Compound 4a

1H NMR (400 MHz, CDCl$_3$) of Compound 4b
13C NMR (100MHz, CDCl$_3$) of Compound 4b

1H NMR (400MHz, CDCl$_3$) of Compound 4c
13C NMR (100 MHz, CDCl$_3$) of Compound 4c

1H NMR (400 MHz, CDCl$_3$) of Compound 4d
13C NMR (100 MHz, CDCl$_3$) of Compound 4d

1H NMR (400 MHz, CDCl$_3$) of Compound 4e
13C NMR (100 MHz, CDCl$_3$) of Compound 4e

1H NMR (400 MHz, CDCl$_3$) of Compound 4f
13C NMR(100MHz, CDCl$_3$) of Compound 4f

1H NMR(400MHz, CDCl$_3$) of Compound 4g
13C NMR (100MHz, CDCl$_3$) of Compound 4g

1H NMR (400MHz, CDCl$_3$) of Compound 4h
13C NMR (100MHz, CDCl$_3$) of Compound 4h

1H NMR (400MHz, CDCl$_3$) of Compound 4i
\(^{13}\)C NMR(100MHz, CDCl\(_3\)) of Compound 4i

\(^1\)H NMR(400MHz, CDCl\(_3\)) of Compound 4j
13C NMR(100MHz, CDCl₃) of Compound 4j

1H NMR(400MHz, CDCl₃) of Compound 4k
13C NMR(100MHz, CDCl$_3$) of Compound 4k

1H NMR(400MHz, CDCl$_3$) of Compound 4l
13C NMR (100MHz, CDCl$_3$) of Compound 4l

1H NMR (400MHz, CDCl$_3$) of Compound 4m
13C NMR (100 MHz, CDCl$_3$) of Compound 4m

1H NMR (400 MHz, CDCl$_3$) of Compound 4n
13C NMR (100MHz, CDCl$_3$) of Compound 4n

1H NMR (400MHz, CDCl$_3$) of Compound 4o
13C NMR (100 MHz, CDCl$_3$) of Compound 4o

1H NMR (400 MHz, CDCl$_3$) of Compound 4p
C NMR (100 MHz, CDCl$_3$) of Compound 4p

13C NMR (100 MHz, CDCl$_3$) of Compound 4p

1H NMR (400 MHz, CDCl$_3$) of Compound 4q
13C NMR (100MHz, CDCl$_3$) of Compound 4q

1H NMR (400MHz, CDCl$_3$) of Compound 4r
1H NMR(400MHz, D$_2$O) of Compound 5a

1C NMR(100MHz, CDCl$_3$) of Compound 4r
1H NMR(400MHz, D$_2$O) of Compound 5b

1H NMR(400MHz, D$_2$O) of Compound 5c
1H NMR(400MHz, D$_2$O) of Compound Glucocyamine

1H NMR(400MHz, D$_2$O) of Compound Ismelin
13C NMR (100 MHz, D$_2$O) of Compound **Ismelin**.

1H NMR (400 MHz, CDCl$_3$) of Compound **10**
13C NMR(100MHz, CDCl$_3$) of Compound 10

1H NMR(400MHz, CD$_3$OD) of Compound 12
13C NMR (100MHz, DMSO-d_6) of Compound 12

Peking University Mass Spectrometry Sample Analysis Report

ESI of compound 12