Supporting Information

Sunlight-Harnessing and Storing Heterojunction TiO$_2$/Al$_2$O$_3$/WO$_3$ Electrodes

Seonghun Kim1 and Hyunwoong Park2,*

1Department of Physics and 2School of Energy Engineering, Kyungpook National University,
Daegu 702-701, Korea

Figure S1. EDX analyses for the cross section of TiO$_2$/Al$_2$O$_3$/WO$_3$ (TAW). Distance refers to the location from top (i.e., from WO$_3$ to TiO$_2$).
Figure S2. SEM images of (a) TiO$_2$/Al$_2$O$_3$ (top view) and (b) magnification of inset in (a). 0.2 M aluminum-precursor solution treated and annealed.
Figure S3. EDX analyses of TiO₂/Al₂O₃ (TA) surface treated with 0.2 M aluminum precursor.
Figure S4. EDX analyses of TiO$_2$/Al$_2$O$_3$ (TA) surface treated with 0.2 M aluminum precursor.
Figure S5. XPS spectra of Ti2p bands for TiO$_2$ and TiO$_2$/Al$_2$O$_3$ samples. 0.2 M aluminum precursor treated.

Figure S6. Resolved XPS spectra of O1s band for TiO$_2$ sample. 0.2 M aluminum precursor treated.
Figure S7. UV-Vis diffuse reflectance absorption spectra of TW before and after light on/off.

Figure S8. XPS spectrum of TAW3 electrode immersed in Cr$^{6+}$ solution after 10.5 h from light-off (irradiation time: 0.5 h). No Cr signal was found.
Figure S9. XPS spectra of TW and TAW3 electrodes immersed in Ag$^+$ solution after 1.5 h from light-off (irradiation time: 0.5 h). The binding energies of these bands correspond to Ag0. Atomic percentages of Ag0 are 21% (TW) and 30% (TAW).
In n-type oxide semiconductors, conduction band level (E_{cb}) is located at ca. 0.2 V negative of flat band potential (E_{fb}) and hence both potentials are often considered same.1 Although there are several ways to estimate the flat band potentials, one of the commonly accepted is to measure the photocurrent onset potential (E_{on}).1 With this in mind, we obtained chopped linear sweep voltammograms of sample electrodes to estimate their flat band potentials (Figure S10). The onset potentials of TiO\textsubscript{2} and WO\textsubscript{3} are around −0.83 and +0.03 V vs. SCE, respectively. These values correspond to −0.235 and 0.625 V vs. RHE (reversible hydrogen electrode), which are similar to the literature values (−0.1 and +0.41 V vs. RHE).2 Accordingly, the 0.2 V-difference between E_{cb} and E_{fb} is also quite acceptable. When TiO\textsubscript{2} and WO\textsubscript{3} are layer-by-layer-coupled, the onset potential is around −0.3 V vs. SCE (+0.295 V vs. RHE), which is close to the mid-point of the two onset potentials. Under a photo-steady state, photogenerated electrons move from TiO\textsubscript{2} to WO\textsubscript{3}, shifting the WO\textsubscript{3} conduction band upwardly and creating the mid-potential (potential mixing due to Fermi level equilibration). With the Al\textsubscript{2}O\textsubscript{3}-treatment, the onset potential is insignificantly changed, indicating that Al\textsubscript{2}O\textsubscript{3} hardly influences the energetics of the interfacial semiconductors. The electrons at the TiO\textsubscript{2} side can move to WO\textsubscript{3} through Al\textsubscript{2}O\textsubscript{3} because of the energy difference ~ 0.8 V. Upon light-off, the mixed potentials of the electrodes (TW and TAW) will be −0.3 V vs. SCE. In this situation, TiO\textsubscript{2} has a limited number of carriers, while WO\textsubscript{3} retains a number of electrons of −0.3 V vs. SCE. The backward transfer of these electrons is possible yet very slow due to the Al\textsubscript{2}O\textsubscript{3}.