SUPPORTING INFORMATION FOR:

Cacalol and Cacalol acetate as photoproducers of singlet oxygen and as free radical scavengers, evaluated by EPR spectroscopy and TBARS

Virginia Gómez-Vidales, a* Gilma Granados-Oliveros, a,b Antonio Nieto-Camacho, a Mirna Reyes-Solís, a Manuel Jiménez-Estrada a

a Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, Coyoacán, D.F., C.P. 04510. México.
b GIADS, Facultad de Química Ambiental, Universidad Santo Tomás de Aquino, Bucaramanga, Colombia.

* Corresponding author: Tel. 52 55 56224617, Fax 52 55 5616 2217. E-mail address: gomvidal@unam.mx (Virginia Gómez)
List of Contents:

Figures:

Figure A_1 UV-vis spectra for Cacalol and Cacalol acetate

Appendices:

Additional details of the EPR measurements
A1.1 Quantum Yield for the production of Singlet Oxygen
A1.2 Flux of Absorbed Photons.
A2. Characterization of Compounds
A1.1 Quantum Yield for Production of Singlet Oxygen

The 1O_2 radical quantum yield, $\phi^{^1O_2}$, can be determined from the generation rate of singlet oxygen, $R^{^1O_2}$, and the flux of absorbed photons, I_a [1]:

$$\phi^{^1O_2} = \frac{R^{^1O_2}}{I_a}$$

For determining the absolute 1O_2 generation rate, the method of EPR spin-trapping with TEMP was employed. TEMP reacts with 1O_2 to give the adduct TEMPO [2].

A1.2 Flux of Absorbed Photons.
The methodology to determine I_a is described in detail by Sun and Bolton [1]. The photon flux I_a absorbed by a sample is the product of the incident photon flux I_o and the integrated absorption fraction F_S (for a sample S) over the wavelength range used in the experiment (300-800 nm) (eq.1):

$$I_a = I_o \cdot F_S \quad (1)$$

F_S is given by eq. 2

$$\int_{\lambda_1}^{\lambda_2} I_\lambda T_\lambda f_\lambda^s \, d\lambda / \int_{\lambda_1}^{\lambda_2} I_\lambda T_\lambda \, d\lambda \quad (2)$$

where I_λ is the relative incident photon flux in the wavelength band dλ, T_λ is the transmittance of the filter at wavelength λ, and

$$f_\lambda^s = 1 - 10^{-A_\lambda^s} \quad (3)$$

is the fraction of light absorbed at wavelength λ, where A_λ^s is the absorbance of the samples at wavelength λ. The integrals were determined by a sum over the wavelength range 300-800 nm.

The incident photon flux I_o can be determined by a standard actinometer method, based on the photochemical conversion of the ferrioxalate salt. Irradiation with UV-vis light causes the reduction of Fe$^{3+}$ to Fe$^{2+}$ (reaction 1) [3, 4]:

$$2[Fe(C_2O_4)_3]^{3-} \xrightarrow{h\nu} 2Fe^{2+} + 5(C_2O_4)^{2-} + 2CO_2 \quad (1)$$

The generation rate of Fe$^{2+}$ ions $R_{Fe}^{2+}(M.s^{-1})$ can be determined spectrophotometrically at 510 nm after forming a complex with 1,10-phenanthroline (0.1%). The incident photon flux I_o is then obtained from eq. 4:

$$I_o = R_{Fe}^{2+}/ \phi_{Fe}^{2+} F_S \quad (4)$$
\(\phi_{Fe^{2+}} \) is the quantum yield of \(Fe^{2+} \) generation by photochemical reaction, and \(F_{RS} \) is the integrated absorption fraction of the Ferrioxalate salt solution over the range of the wavelengths involved in the experiment. The weighted average of the quantum yield of \(Fe^{2+} \) production from \(Fe^{3+} \) salt over the bandwidth of the transmitting filter is known to be 1.0. According to our results, the formation rate of \(Fe^{2+} \) was found to be \(1.5 \times 10^{-7} \pm 0.03 \) M s\(^{-1}\) and \(I_o \) was \(1.5 \times 10^{-7} \pm 0.03 \) M s\(^{-1}\). C and CA concentrations were chosen in the range where the incident light is completely absorbed (fraction \(I_a/I_o = 1 \)). In our experiments, \(I_a \) was found to be \(1.5 \times 10^{-7} \pm 0.03 \) M s\(^{-1}\).

A2. Characterization of Compounds

![Chemical structure of Cacalol](attachment:chemical_structure.png)

Cacalol

mp \(92-94^\circ C \), \([\alpha]^{20}_D +10\), UV \(\lambda_{max} : 218 (\varepsilon 30400), 256 (\varepsilon 10500), 264 (\varepsilon 10000), 284 (\varepsilon 1840)\)

IR (KBr): 3580, 2966, 2934, 2870, 1450 cm\(^{-1}\).

RMN \(^1H\) (CDCl\(_3\)) δ: 1.18 (d, 3H, CH\(_3\), C-15), 3.22 (m, 1H, C-4) 1.75–1.90 (m, 4H, C-3, C-2), 2.92 - 3.03 (m, 2H, C-1), 2.36 (d, 3H, CH\(_3\), C-13), 2.52 (s, 3H, CH\(_3\), C-14), 7.24 (m, 1H, C-12).

RMN \(^{13}C\) (CDCl\(_3\)) δ: 136.4 (C-12), 117.2 (C-11), 120.2 (C-7), 118.9 (C-6), 135.6 (C-5), 29.8 (C-4), 30.2 (C-3), 16.7 (C-2), 23 (C-1), 126.2 (C-10), 142.2 (C-9), 140.8 (C-8), 11.3 (C-13), 13.8 (C-14), 21.4 (C-15).

EM (IE) m/z: 230 (M\(^+\), 71 %), 215 (M\(^+\)-15, 100 %).
Cacalol Acetate

mp 103-104°C; [α]₂⁰⁰° -9; UV λₘₐₓ: 218 (ε27000), 255 (ε12000), 280 (ε2100), 292 (ε1320).

IR (KBr): 1760, 1630, 1600 cm⁻¹.

RMN ¹H (CDCl₃) δ: 1.18 (d, 3H, CH₃, C-15), 3.24 (m, 1H, C-4), 1.75–1.90 (m, 4H, C-3, C-2), 2.77-2.88 (m, 2H, C-1), 2.38 (d, 3H, CH₃, C-13), 2.40 (s, 3H, CH₃-CO), 2.56 (s, 3H, CH₃, C-14), 7.22 (m, 1H, C-12).

RMN ¹³C (CDCl₃) δ: 168.6(CO-Me), 135.4 (C-8), 124.9 (C-11), 126.8 (C-7), 116.7 (C-6), 131.4 (C-5), 28.9 (C-4), 29.9 (C-3), 16.6 (C-2), 23.4 (C-1), 127.0 (C-10), 145.2 (C-9), 141.4 (C-12), 11.3 (C-13), 13.8 (C-14), 21.4 (C-15), 20.5 (CH₃-CO).

EM (IE) m/z: 272 (M⁺, 71 %), 215 (M⁺-15, 100 %).

References
