Supporting information

Substituent and solvent effects on the fluorescent and photochromic properties of 2-(2-pyridyl) imidazole containing diarylethene derivatives

Xuefeng Peng,a,b Jian-Guo Deng,b and Hai-Bing Xua,b,c

aState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; bNew Materials R&D Center, Key Laboratory of science and Technology on high energy laser, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, Sichuan 610200, China; cState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

Table of contents

1. Lippert-Mataga equations ... 2
2. Absorption and fluorescence spectra ... 3
3. Fatigue resistance .. 5
4. Solvent effect .. 5
5. Reference ... 6
6. Copies of 1H NMR .. 6
7. Copies of 13C NMR ... 11
1. Lippert-Mataga equations

\[\Delta v = \nu_{ab} - \nu_{fl} = \frac{2\Delta f (\mu_e - \mu_g)^2}{hca^3} + C \]

(1)

\[a = (3M/AN\pi d)^{1/3} \]

(2)

\[\Delta f = f - \frac{1}{2} f' = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{1}{2} \frac{n^2 - 1}{(2n^2 + 1)} \]

(3)

Where, \(\nu_{ab} \) and \(\nu_{fl} \) are the wave numbers of the absorption and emission maxima, respectively, \(\mu_e \) and \(\mu_g \) is the excited state and ground state dipole moments of a solute, \(h \) is the Planck’s constant, \(c \) is the velocity of light in vacuum, \(a (\text{Å}) \) is Onsager radius of solute, which can be derived from the Avogadro number \(N \), molecular weight \(M \), and density \(d \) of solute. \(C \) is a constant. The solvent polarity parameter \(\Delta f \) is a function of the dielectric constant \(\varepsilon \) and the refractive index \(n \).
2. Absorption and fluorescence spectra

![Absorption and fluorescence spectra](image)

Figure S1. Absorption spectra (left, the insets show the reversible color changes between the open forms and photostationary states) and emission spectra ($\lambda_{ex} = 325$ nm, right) of L1–L5 (5×10$^{-5}$ mol/L) in CH$_2$Cl$_2$ upon irradiation with UV light.
Figure S2. Absorption spectra (left, the insets show the reversible color changes between the open forms and photostationary states) and emission spectra ($\lambda_{\text{ex}} = 325$ nm, right) of L3 (5×10^{-5} mol/L) in various solutions upon irradiation with UV light.
3. Fatigue resistance

Figure S3. Fatigue resistance of L3 (5×10^{-5} mol/L) was tested in degassed CH$_2$Cl$_2$ by alternatively irradiating with the UV ($\lambda = 302$ nm) and the visible light ($\lambda = 520$ nm) (open (○) and closed (●) form), monitored by the absorbance at 572 nm.

4. Solvent effect

Figure S4. Linear relationship between the Stokes shift ($\Delta\nu$) values of L3 in various solvents and the DN.

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013
5. Reference

6. Copies of 1H NMR

(1) 2-methylbenzo[b]thiophen-3-ylboronic acid (5)

(2) 1-(4-methoxyphenyl)-2-(2-pyridyl)imidazole (9)
(3) 1-(4-nitrophenyl)-2-(2-pyridyl)imidazole (11)

(4) 1-(4-methoxyphenyl)-4,5-dibromo-2-(2-pyridyl)imidazole (12)
(5) 1-phenyl-4,5-dibromo-2-(2-pyridyl)imidazole (13)

(6) 1-(4-nitrophenyl)-4,5-dibromo-2-(2-pyridyl)imidazole (14)
(7) 1-(4-methoxyphenyl)-4,5-bis-[5-chloro-2-methyl-3-thienyl]-2-(2-pyridyl)imidazole (L1)

(8) 1-phenyl-4,5-bis-[2-methylbenzo[b]thiophen-3-yl]-2-(2-pyridyl)imidazole (L2)
(9) 1-phenyl-4,5-bis-[5-chloro-2-methyl-3-thienyl]-2-(2-pyridyl)imidazole (L3)

(10) 1-phenyl-4,5-bis-[2,5-dimethyl-3-thienyl]-2-(2-pyridyl)imidazole (L4)
(11)
1-(4-nitrophenyl)-4,5-bis-[5-chloro-2-methyl-3-thienyl]-2-(2-pyridyl)imidazole (L5)

7. Copies of 13C NMR

(1) 1-(4-methoxyphenyl)-2-(2-pyridyl)imidazole (9)
(2) 1-(4-nitrophenyl)-2-(2-pyridyl)imidazole (11)

(3) 1-phenyl-4,5-dibromo-2-(2-pyridyl)imidazole (13)
(4) 1-(4-nitrophenyl)-4,5-dibromo-2-(2-pyridyl)imidazole (14)

(5) 1-(4-methoxyphenyl)-4,5-bis-[5-chloro-2-methyl-3-thienyl]-2-(2-pyridyl)imidazole (L1)
(6) 1-phenyl-4,5-bis-[2-methylbenzo[b]thiophen-3-yl]-2-(2-pyridyl)imidazole (L2)

(7) 1-phenyl-4,5-bis-[5-chloro-2-methyl-3-thienyl]-2-(2-pyridyl)imidazole (L3)
(8) 1-phenyl-4,5-bis-[2,5-dimethyl-3-thienyl]-2-(2-pyridyl)imidazole (L4)

(9) 1-(4-nitrophenyl)-4,5-bis-[5-chloro-2-methyl-3-thienyl]-2-(2-pyridyl)imidazole (L5)