Supporting information for:

UV light enhanced TiO$_2$/graphene device for oxygen sensing at room temperature

Jia Zhanga,b, Chao Zhaob, Ping An Hua, Yong Qing Fub, Zhenlong Wanga, Wenwu Caoc, Bin Yangc, Frank Placidob

aKey Lab of Microsystem and Microstructure, Harbin Institute of Technology, Ministry of Education, No. 2 YiKuang Street, Harbin, 150080, China

bThin Film Centre, Scottish Universities Physics Alliance (SUPA), University of the West of Scotland, Paisley, PA1 2BE, UK)

cCondensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080, China

Fig. S1 Current-voltage (I-V) characteristics of the TiO$_2$/graphene device in high vacuum (a) and in high purity N$_2$ atmosphere (b) with and without UV light.
Fig. S2 Characteristics of O\textsubscript{2} sensing performance of the pristine graphene and TiO\textsubscript{2} device. Optical image of the pristine graphene (a) and TiO\textsubscript{2} device (b). (c) I-V curves of the pristine graphene device in O\textsubscript{2} with and without UV light, inset is enlarged curves. (d) I-V curves of the TiO\textsubscript{2} device in O\textsubscript{2} with and without UV light. (e) Response of the pristine graphene device sequent exposure to N\textsubscript{2} and O\textsubscript{2} with UV light, V_{bias}=1 V. (f) Response of the TiO\textsubscript{2} device sequent exposure to N\textsubscript{2} and O\textsubscript{2} with UV light, V_{bias}=1 V.