A novel green route for the synthesis of N-phenylacetamides, benzimidazoles and acridinediones using Candida parapsilosis ATCC 7330

Pula Mahajabeena and Anju Chadhaa,b,*

a Laboratory of Bioorganic Chemistry, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
b National Centre for Catalysis Research, Indian Institute of Technology Madras, Chennai 600 036, India
Tel.: +91 44 2257 4106; Fax: +91 44 2257 4102, e-mail: anjuc@iitm.ac.in

SUPPORTING INFORMATION

Table of Contents

General procedure for the synthesis of enaminones ...2
Preparation of standard amides ..2
General procedure for the synthesis of benzimidazoles by whole cells of \textit{C. parapsilosis} ATCC 7330 ...2
General procedure for the synthesis of acridinediones by whole cells of \textit{C. parapsilosis} ATCC 7330 ...3
Spectral analysis of acridinediones ..4
NMR spectra of deuterated and undeuterated \textit{N}-(4-methoxyphenyl) acetamide10
NMR spectra of deuterated and undeuterated 2-methylbenzimidazole12
General procedure for the synthesis of enaminones (4a-4e)

Equimolar mixture of cyclohexane-1,3-dione (112 mg, 1 mmol) was taken and mixed with the amine (1 equiv.) in a 50 ml RB flask. The unsealed RB flask containing the reaction mixture was kept in a beaker and irradiated with microwave radiation (domestic microwave oven of Power 300 W) for a specified period (6-20 min) to get the corresponding enaminones (75-89% yield). All the products were purified by column chromatography and characterized by spectral techniques.

Preparation of standard amides

4-Methoxyaniline (0.7 mL, 6.1 mmol, and 0.5 equiv.), acetic anhydride (0.7 mL, 7.3 mmol and 0.6 equiv.) and dry DCM (18 mL) were added to a round-bottom flask and the reaction mixture was stirred at room temperature and was monitored by TLC at regular intervals of time. After the completion of reaction, the reaction mixture was washed with a saturated solution of sodium carbonate, the organic layers were dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The reactin mixture was purified by column chromatography with hexane/ethyl acetate to get N-aryl amides in 50-68% yield.

General procedure for the synthesis of benzimidazoles using whole cells of C. parapsilosis ATCC 7330

2-phenylenediamine 1g (0.67 mmol, 72 mg) dissolved in ethanol (1.5 mL) was added into a 150 mL Erlenmeyer flask containing the cells (18 g wet wt) in water (15 mL) and stirred on an orbital shaker at 200 rpm for 24 h at 35 °C. The reaction was performed in triplicates. The conversions were determined by HPLC using a C18 column with flow rate of 0.5mL/min using acetonitrile: water (40:60) as eluent. After completion of the reaction, the reaction mixture was extracted by ethylacetate (3 X 10 mL) the organic layer was dried over anhydrous sodium sulphate and concentrated under high vacuum. The crude product was purified by column chromatography on silica gel (mesh size 100–200) using ethyl acetate and hexane mixture (80:20), to give the product in 84% yield. Similar procedure was followed for other diamines. Under identical conditions control experiments were done without whole cells. All the products were characterised by ¹H, ¹³C NMR and IR spectroscopy.
General procedure for the synthesis of acridinediones using whole cells of *C. parapsilosis* ATCC 7330

3-(phenylamino)cyclohex-2-enone 4a (0.37 mmol, 72 mg) dissolved in ethanol (1.5 mL) was added into a 150 mL Erlenmeyer flask containing the cells (18 g wet wt) in water (15 mL) and stirred on an orbital shaker at 200 rpm for 24 h at 35 °C. The reaction was performed in triplicates. The conversions were determined by HPLC using a C18 column with flow rate of 0.5 mL/min using acetonitrile: water (85:15) as eluent. After completion of the reaction, the reaction mixture was extracted by ethylacetate (3 X 10 mL) the organic layer was dried over anhydrous sodium sulphate and concentrated under high vacuum. The crude product was purified by column chromatography on silica gel (mesh size 100–200) using dichloromethane and methanol mixture (99:01), to give the product in 48% yield. Similar procedure was followed for other diamines. Under identical conditions control experiments were done without whole cells. All the products were characterised by 1H, 13C NMR and IR spectroscopy.

References

Spectral analysis of acridinediones

1H NMR spectrum of 5a

13C NMR spectrum of 5a
HRMS data for 5a

Single Mass Analysis
Tolerance = 200.0 mDa / DBE: min = -1.5, max = 50.0
Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions
3 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>308.1636</td>
<td>308.1651</td>
<td>-1.4</td>
<td>-4.7</td>
<td>10.5</td>
<td>1</td>
<td>C20 H22 N O2</td>
</tr>
</tbody>
</table>

1H NMR spectrum of 5b

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013
Single Mass Analysis

Tolerance = 200.0 mDa / DBE: min = -1.5, max = 50.0

Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions
3 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>338.1880</td>
<td>338.1882</td>
<td>-0.2</td>
<td>-0.7</td>
<td>10.0</td>
<td>1</td>
<td>C21 H24 N O3</td>
</tr>
</tbody>
</table>
1H NMR spectrum of 5c

13C NMR spectrum of 5c
HRMS data for 5c

Single Mass Analysis
Tolerance = 200.0 mDa / DBE: min = -1.5, max = 50.0
Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions
3 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>322.1794</td>
<td>322.1807</td>
<td>-1.3</td>
<td>-4.0</td>
<td>10.5</td>
<td>1</td>
<td>C21 H24 N O2</td>
</tr>
</tbody>
</table>

1H NMR spectrum of 5d
\[^{13}C \text{ NMR spectrum of 5d} \]

![NMR Spectrum Image]

\[\text{HRMS data for 5d} \]

Single Mass Analysis
- Tolerance = 200.0 mDa
- DBE: min = -1.5, max = 50.0
- Isotope cluster parameters: Separation = 1.0, Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions
9 formula(e) evaluated with 1 results within limits (all results up to 1000) for each mass

<table>
<thead>
<tr>
<th>Minimum:</th>
<th>Maximum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>Score</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>342.1255</td>
<td>342.1261</td>
<td>-0.6</td>
<td>-1.8</td>
<td>10.5</td>
<td>1</td>
<td>C20 H21 N O2 Cl</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013
NMR spectra of deuterated and undeuterated N-(4-methoxyphenyl) acetamide

1H NMR spectrum of 3a

13C NMR spectrum of 3a
1H NMR spectrum of 2b

13C NMR spectrum of 2b
NMR spectra of deuterated and undeuterated 2-methylbenzimidazole

1H NMR spectrum of 3b

![1H NMR spectrum of 3b](image)

13C NMR spectrum of 3b

![13C NMR spectrum of 3b](image)