Synthesis of O-Benzyl Hydroxamates Employing the Sulfonate Esters of N-Hydroxybenzotriazole

Nani Babu Palakurthy, Dharman Dev, Sonali Paikaray, Susmitnarayan Chaudhury, Bhubaneswar Mandal*

Department of Chemistry, Indian Institute of technology Guwahati, Guwahati, Assam, India

Tel: 0361-2582319; E-mail: bmandal@iitg.ernet.in

Supporting Information

Figure S1. 1H NMR spectra of Ac-NHOBn (entry 1, table 2)
Figure S2. 1H NMR spectra of BzCONHOBn (entry 2, table 2)

Figure S3. 1H NMR spectra of m-Cl$_2$-C$_6$H$_4$-CONHOBn (entry 3, table 2)
Figure S4. 1H NMR spectra of p-NO$_2$-C$_6$H$_4$-CONHOBn (entry 4, table 2)

Figure S5. 1H NMR spectra of m-NO$_2$-C$_6$H$_4$-CONHOBn (entry 5, table 2)
Figure S6. 1H NMR spectra of BnCONHOBn (entry 6, table 2)

Figure S7. 1H NMR spectra of Boc-Gly-NHOBn (entry 7, table 2)
Figure S8. 1H NMR spectra of Boc-Ala-NHOBn (entry 8, table 2)

Figure S9. 1H NMR spectra of Cbz-Ala-NHOBn (entry 9, table 2)
Figure S10. 1H NMR spectra of Boc-Phe-NHOBn (entry 10, table 2)

Figure S11. 1H NMR spectra of Boc-Pro-NHOBn (entry 11, table 2)
Figure S12. 1H NMR spectra of Fmoc-Gly-NHOBn (entry 12, table 2)

Figure S13. 1H NMR spectra of Fmoc-Ala-NHOBn (entry 13, table 2)
Figure S14. H NMR Spectra of Fmoc-Phe-NHOBn (entry 14, table 2)

Figure S15. 13C NMR spectra of Fmoc-Phe-NHOBn (entry 15, table 2)
Figure S16. HRMS spectra of Fmoc-Phe-NHOBn (entry 14, table 2). Calcd. mass for [M+H]^+: 493.2127 found: 493.2159.

Figure S17. ^1^H NMR spectra of Fmoc-Leu-NHOBn (entry 15, table 2)
Figure S18. 13C NMR spectra of Fmoc-Leu-NHOBn (entry 15, table 2)

Figure S19. HRMS spectra for Fmoc-Leu-NHOBn, Calcd. mass for [M+H]$: 459.2284$ found: 459.2298.
Figure S20. 13C NMR spectra of Fmoc-Ser(tBu)-NHOBn (entry 16, table 2)

Figure S21. 13C NMR spectra of Fmoc-Ser(tBu)-NHOBn (entry 16, table 2)
Figure S22. HRMS spectra of Fmoc-Ser(tBu)-NHOBn, Calcd. mass for [M+H]⁺: 489.2389 found: 489.2294. (entry 16, table 2)

Figure S23. ¹H NMR spectra of Fmoc-Asp(OBzl)-NHOBn (entry 17, table 2)
Figure S24. 13C NMR spectra of Fmoc-Asp(OBzl)-NHOBn (entry 17, table 2)

Figure S25. HRMS spectra of Fmoc-Asp(OBzl)-NHOBn Calcd. mass for [M+H]$^{+}$: 551.2182 found: 551.2374. (entry 17, table 2)
Figure S26. 1H NMR spectra of Boc-Ala-Phe-OH

Figure S27. 1H NMR spectra of Boc-Ala-Phe-NHOBn (entry 1, table 3)
Figure S28 13C NMR spectra of Boc-Ala-Phe-NHOBn (entry 1, table 3)
Figure S29. HRMS spectra of Boc-Ala-Phe-NHOBn Calcd. mass for [M+K]⁺: 479.1826 found: 479.1823. (entry 1, table 3)

Figure S30. ¹H NMR spectra of Fmoc-Ala-Phe-OH

Figure S31. ¹H NMR spectra of Fmoc-Ala-Phe-NHOBn (entry 20, table 3)
Figure S32. 13C NMR spectra of Fmoc-Ala-Phe-NHBn (entry 20, table 3)

Figure S33. HRMS spectra of Fmoc-Ala-Phe-NHBn Calcd. mass for [M+H]$^+$ 564.2498 found: 564.2456. (entry 16, table 2)
Racemization study:

Figure S34. LC-MS Chromatograms for the compound Fmoc-Ala-Phe-OH using the acetonitrile and Millipore water as solvent with 0.1% formic acid.

Figure S35. MS spectra for the compound Fmoc-Ala-Phe-OH at two different retention times (Rt 5.6, upper panel) and (Rt 6.1, lower panel). Calcd. mass for [M+H]^+ 457.17 found: 457.18.

Figure S36. LC-MS Chromatograms for the compound Fmoc-Ala-Phe-NHOBn using the acetonitrile and Millipore water as solvent with 0.1% formic acid.
Figure S37. MS spectra for the compound Fmoc-Ala-Phe-NHOBn, at two different retention times (Rt 4.4, upper panel) and (Rt 4.8, lower panel). Calcd. mass for [M+H]+ 564.24 found: 564.22.

Figure S38. MS spectra for the compound Boc-Ala-Phe-OH, at two different retention times (Rt 5.6 min, upper panel) and (Rt 6.4 min, lower panel). Calcd. mass for [M+H]+ 334.16 found: 334.26.
Figure S39. MS spectra for the compound Boc-Ala-Phe-NHOBn, at two different retention times. Calcd. mass for [M+H]+ 442.23; found: 442.22.
Mechanisms study:

Figure S40. 1H-NMR spectra of Fmoc-Gly-OH

Figure S41. 1H-NMR spectra of Fmoc-Gly-OH + TsOBt (after 2 min.) along with DIPEA (2 equiv.)
Figure S42. 1H-NMR spectra of Fmoc-Gly-OH + TsOBt (after 5 min.) along with DIPEA (2 equiv.)

Figure S43. IR spectra of Fmoc-Gly-OH + TsOBt (after 2 min.) along with DIPEA (2 equiv.)
Figure S44. IR spectra of Fmoc-Gly-OH + TsOBt (after 5 min.) along with DIPEA (2 equiv.)