Supporting Information

Organocatalytic stereoselective approach to the total synthesis of (-)-halosaline

Vishwajeet Jhaa and Pradeep Kumar*a

aDivision of Organic Chemistry, CSIR-NCL (National Chemical Laboratory), Pune 411008, India

*Corresponding Author: Telephone number: +91-20-25902050, Fax number: +91-20-25893614; e-mail address: pk.tripathi@ncl.res.in
Table of contents

General Experimental

1. 1H and 13C spectra for compound 9
 - S3
2. Chiral GC for compound 9
 - S4
3. 1H and 13C spectra for compound 11
 - S5 & S6
4. 1H and 13C spectra for compound 8
 - S7
5. HPLC of compound 8
 - S8
6. 1H and 13C spectra for compound 12
 - S9
7. 1H and 13C spectra for compound 13
 - S10
8. 1H and 13C spectra for compound 18
 - S11
9. 1H and 13C spectra for compound 19
 - S12
10. 1H and 13C spectra for compound 20
 - S13
11. 1H and 13C spectra for compound 21
 - S14
12. 1H and 13C spectra for compound 1
 - S15
13. 1H and 13C spectra for compound 17
 - S16
14. 1H and 13C spectra for compound 15
 - S17
15. 1H and 13C spectra for compound 16
 - S18
General Methods:

All reactions requiring anhydrous conditions were performed under a positive pressure of argon using oven-dried glassware (110 °C), which was cooled under argon. Solvents used for chromatography were distilled at respective boiling points using known procedures.

All commercial reagents were obtained from Sigma-Aldrich Chemical Co. and Alfa Aesar. Progress of the reactions was monitored by TLC using precoated aluminium plates (Merck kieselgel 60 F 254). Column chromatographies were performed on silica gel 60-120/ 100-200/ 230-400 mesh obtained from S. D. Fine Chemical Co. India or Spectrochem India. Typical syringe and cannula techniques were used to transfer air- and moisture-sensitive reagents.

IR spectra were recorded on a Perkin–Elmer infrared spectrometer model 599-B and model 1620 FT-IR. 1H NMR spectra were recorded on Bruker AC-200, Bruker AV-400, Jeol-400 and Bruker DRX – 500 instruments using deuterated solvent. Chemical shifts are reported in ppm. Proton coupling constants (J) are reported as absolute values in Hz and multiplicity (br, broadened; s, singlet; d, douplet; t, triplet; m, multiplet). 13C NMR spectra were recorded on Bruker AC-200, Bruker AV- 400, Jeol-400 and Bruker DRX-500 instruments operating at 50 MHz, 100 MHz, and 125 MHz, respectively. 13C NMR chemical shifts are reported in ppm relative to the central line of CDCl$_3$ (δ 77.0). Elemental analyses were determined at Central Elemental Analysis Facility division at National Chemical Laboratory. All HPLC analyses used to determine enantiomeric purity were calibrated with sample of the racemate.
Ethyl (R)-4-hydroxyheptanoate (9):
Enantiomeric excess:

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Volume: 1.0000
Sample Amount: 2.00000 ng/ul (not used in calc.)

Signal 1: FID1 A

<table>
<thead>
<tr>
<th>Peak #</th>
<th>RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.950</td>
<td>0.3058</td>
<td>1480.13977</td>
<td>80.67734</td>
<td>96.65905</td>
</tr>
<tr>
<td>2</td>
<td>20.642</td>
<td>0.2582</td>
<td>51.16001</td>
<td>3.30218</td>
<td>3.34095</td>
</tr>
</tbody>
</table>
Ethyl (R)-4-((tert-butyldimethylsilyl)oxy)heptanoate (11):
Dibenzyl 1-((4S,6R,E)-6-((tert-butyldimethylsilyl)oxy)-1-ethoxy-1-oxonon-2-en-4-yl)hydrazine-1,2-dicarboxylate (8):
<table>
<thead>
<tr>
<th>No.</th>
<th>RT</th>
<th>Height</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.31</td>
<td>15473</td>
<td>153762</td>
<td>1.940</td>
</tr>
<tr>
<td>2</td>
<td>6.90</td>
<td>474211</td>
<td>7773316</td>
<td>98.060</td>
</tr>
</tbody>
</table>

Peak Quantitation: AREA
Calculation Method: AREA%
Ethyl (4R,6R)-4-((tert-butoxycarbonyl)amino)-6-((tert-butyldimethylsilyl)oxy)nonanoate (12):
tert-Butyl ((4R,6R)-6-((tert-butyldimethylsilyl)oxy)-1-hydroxynonan-4-yl)carbamate (13):

[Chemical structure diagram]

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013
tert-Butyl ((4R,6R)-6-((tert-butyldimethylsilyl)oxy)-1-cyanononan-4-yl)carbamate (18):
tert-Butyl (R)-2-((R)-2-((tert-butyldimethylsilyl)oxy)pentyl)-3,4-dihydropyridine-1(2H)-carboxylate (19):
tert-Butyl ((5R,7R)-7-((tert-butyldimethylsilyl)oxy)-1-hydroxydecan-5-yl)carbamate (20):
tert-Butyl \((R)\)-2-\((R)\)-2-\((\text{tert-butyl} \text{dimethylsilyl})\text{oxy})\text{pentyl}\text{piperidine-1-carboxylate} (21):
(-)-Halosaline (1):
tert-Butyl (R)-2-((R)-2-((tert-butyl dimethylsilyl)oxy)pentyl)-5-oxopyrrolidine-1-carboxylate (17):
tert-Butyl (R)-2-((R)-2-hydroxypentyl)pyrrolidine-1-carboxylate (15):

Chloroform-d

![Chemical structure](image)

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013