PVDF Film Tethered with RGD-click-Poly(Glycidyl Methacrylate) Brushes by Combination of Direct Surface-Initiated ATRP and Click Chemistry for Improved Cytocompatibility

Fei He, a,† Shaojun Yuan, a,* Bin Liang, a
a Multi-phases Mass Transfer & Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
Baiwen Luo, b,† Cleo Choongb,*
b Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
Simo Olavi Pehkoc
C Chemical Engineering Program, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi, United Arab Emirates

†The two authors contributed equally to the manuscript
*To whom all correspondence should be addressed
Tel: +86-28-85999978, Fax: +86-28-85460557
E-mail: yuanshaojun@gmail.com (S.J. Yuan), cleochoong@ntu.edu.sg (C. Choong)
Fig. S1 Representative SEM images of the (a,b) pristine PVDF, (c) PVDF-g-PGMA1, (d) PVDF-g-PGMA2, (e) PVDF-g-PGMA1-click-RGD, (f,g) PVDF-g-PGMA2-click-RGD surfaces. The cross-sectional SEM images of pristine PVDF and PVDF-g-PGMA2-click-RGD surfaces are shown in (b) and (g), respectively.
Fig. S2 Fluorescence images of DAPI-stained ASCs adhered on the (a) pristine PVDF, (b) PVDF-g-PGMA2, (c) PVDF-g-PGMA1-click-RGD, and (d) PVDF-g-PGMA2-click-RGD surfaces after 24 h of culture at a seeding density of 10^4 cells/cm2.