Supporting Information

Silica “SHB” chiral Pc-L* copper complexes for halogen-free solvent cyclopropanation reactions.

Brunilde Castano, Paolo Zardi, Yvonne Honneman, Anne Galarneau, Emma Gallo, R. Psaro, Alessandro Caselli, Vladimir Dal Santo

General. NMR spectra were recorded on Bruker Avance 300-DRX or Avance 400-DRX spectrometers. Chemical shifts (ppm) are reported relative to TMS. The 1H NMR signals of the compounds described in the following have been attributed by COSY and NOESY techniques. Assignments of the resonance in 13C NMR were made using the APT pulse sequence and HSQC and HMBC techniques. Infrared spectra were recorded on a BIO-RAD FTS-7 spectrophotometer. Elemental analyses and mass spectra were recorded in the analytical laboratories of Milan University. GC-MS analysis were performed on a Shimadzu GCMS-QP5050A instrument. Optical rotation were measured on a Perkin Elmer instruments model 343 plus; $[\alpha]_D$ values are given in 10$^{-1}$ deg cm2 g$^{-1}$. The water and air sensitive compounds were handled in a dry-box, model “MB-10-Compact”. Metal loadings are determined by ICP-OES using a Thermo X Series II apparatus. 15 mg of each sample are mineralized by adding 3 mL of 37% HCl, 1 mL of concentrated HNO$_3$, 1 mL of 98% H$_2$SO$_4$. CO-DRIFT spectra of the samples were recorded using a FTS-60A spectrophotometer consisting of a homemade reaction chamber. After purging the apparatus with ultra-pure He, spectra of the samples were recorded at RT in He and CO flow, before and after catalysis. HPLC analyses were performed on a Hewlett-Packard 1050 instrument equipped with DAI-CEL CHIRALCEL, IB, OJ and AD chiral columns.
Solvents were dried prior use by standard procedures and stored under dinitrogen. α-Methyl styrene was distilled over CaH₂ and stored under dinitrogen. Davisil_1 (Grace Davison, LC 150 Å, 35-70 micron) and Aerosil_2 (380, Evonik) are commercially available. All other starting materials were commercial products and were used as received. Unless otherwise specified, all the reactions were carried out in a dinitrogen atmosphere employing standard Schlenk techniques and magnetic stirring.

MCM-41 materials were prepared accordingly as already reported¹ in large scale in 4 L and 2 L autoclaves, for MCM-41_A and MCM-41_B, respectively, starting from 240 and 120 g Aerosil 200 (Degussa) as source of silica, with a temperature of 105 °C for 1h, following the ratio: 1 SiO₂, 0.1 CTAB, 0.27 NaOH, 32 H₂O. The characteristic (pore diameter, pore volume, surface area) are listed below:

Davisil_1 (Davisil LC150 Å, 35-70 micron): pore diameter 13.3 nm; pore volume 1.1 mL/g; surface area 279 m²/g.

Aerosil_2 (Aerosil 380): surface area 262 m²/g.

MCM-41_A (6124): pore diameter 3.6 nm; pore volume 0.61 mL/g; surface area 827 m²/g.

MCM-41_B (6170): pore diameter 3.6 nm; pore volume 0.73 mL/g; surface area 967 m²/g.

SBA-15 were prepared accordingly to references.²,³ The characteristic (pore diameter, pore volume, surface area) are listed below:

SBA-15_A (MFDC061, prepared at 60 °C): pore diameter 6.7 nm; pore volume 0.69 mL/g; surface area 786 m²/g.

SBA-15_B (MFDC065, prepared at 130 °C): pore diameter 9.6 nm; pore volume 1.02 mL/g; surface area 525 m²/g.
Before use, MCM.41 and SBA-15 were calcinated at 550 °C for 8 h in air.

Activation of all silicas was performed in a Schlenk flask at 300 °C for 2-3 h in air, subsequently in high vacuum (at least 10^{-5} mbar) overnight.

The synthesis and characterization of copper(I)(Pc-L*) complexes 14 and 25 were previously reported. The collected analytical data for cis and trans ethyl-2-methyl-2-phenylcyclopropanecarboxylate,6 cis and trans tert-butyl-2-methyl-2-phenylcyclopropanecarboxylate,7 cis and trans ethyl-2-phenylcyclopropanecarboxylate,8 cis and trans ethyl-2-p-tolyl-cyclopropanecarboxylate,9 cis and trans ethyl 2-(4-chlorophenyl)cyclopropanecarboxylate,9 ethyl-2,2-diphenylcyclopropanecarboxylate,8 cis and trans ethyl 2,2-dimethyl-3-(2-methylpropenyl)cyclopropanecarboxylate (ethyl chrysanthemate),7 dimethyl-2-oxabicyclo[3.1.0]hex-3-ene-3,6-dicarboxylate10 and cis and trans ethyl-2-hexylcyclopropanecarboxylate11 are in agreement with those reported in the literature.

Grafting of [CuI(Pc-L*)]CF_{3}SO_{3} complex, 1, on silica. Typical procedure.

Method 1: complex 1 (0.0461 g, 0.0629 mmol) was dissolved in CH_{2}Cl_{2} (10 mL). The resulting colourless solution was added to activated Davisil B (0.400 g), the mixture was stirred at RT for 4 h under inert atmosphere, filtered, washed with CH_{2}Cl_{2} (3 x 5 mL) and dried overnight to yield the immobilized copper(I) complex.

Method 2: [Cu(OTf)]_{2}·(C_{6}H_{6}) (0.140 g, 0.277 mmol) was added to a C_{2}H_{4}Cl_{2} (28 mL) solution of Pc-L* (0.371 g, 0.555 mmol). The resulting colorless solution was stirred for 1 h., than it solution was added to activated Davisil B (3.5 g), the mixture was stirred at RT for 4 h under inert atmosphere, filtered, washed with C_{2}H_{4}Cl_{2} (3 x 10 mL) and dried overnight to yield the immobilized copper(I) complex.
Table S1. Impregnation method and Cu loadings (determined by ICP-OES), of [Cu\(^{1}\)(Pc-L\(^{*}\))]CF\(_3\)SO\(_3\)/SiO\(_2\) samples

<table>
<thead>
<tr>
<th>Entry</th>
<th>SiO(_2) support</th>
<th>Impregnation method</th>
<th>Cu loading [wt %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 / MCM-41_A_1</td>
<td>MCM-41_A</td>
<td>1</td>
<td>0.62</td>
</tr>
<tr>
<td>1 / MCM-41_B_1</td>
<td>MCM-41_B</td>
<td>1</td>
<td>0.54</td>
</tr>
<tr>
<td>1 / Davisil_1</td>
<td>Davisil LC150</td>
<td>1</td>
<td>0.66</td>
</tr>
<tr>
<td>1 / Aerosil_2</td>
<td>Aerosil 380</td>
<td>2</td>
<td>0.45</td>
</tr>
<tr>
<td>1 / SBA-15_A_2</td>
<td>SBA-15_A</td>
<td>2</td>
<td>1.09</td>
</tr>
<tr>
<td>1 / SBA-15_B_2</td>
<td>SBA-15_B</td>
<td>2</td>
<td>1.59</td>
</tr>
<tr>
<td>1 / SBA-15_B_1</td>
<td>SBA-15_B</td>
<td>1</td>
<td>0.45</td>
</tr>
<tr>
<td>2 / Davisil_1</td>
<td>Davisil LC150</td>
<td>1</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Cu loadings between 0.32 and 1.79 wt % were obtained. In general, higher loadings could be achieved using [Cu\(^{1}\)(Pc-L\(^{*}\))]CF\(_3\)SO\(_3\) directly after its synthesis in the dissolved form, without isolation from the solvent.

Figure S1. DRIFT spectra of [Cu\(^{1}\)(Pc-L\(^{*}\))]CF\(_3\)SO\(_3\) pure complex (1) in solid state (mixed with KBr), trace 1; 1 / Davisil_1 sample, trace 2; 1 / SBA-15_B_2 sample, trace 3; 1 / MCM-41_A_1 sample, trace 4.
Figure S2. DRIFT spectra of [Cu'(Pc-L*)]CF₃SO₃/Davisil_1 samples before (1) and after catalysis: 2, 4-chloro styrene + EDA; 3, 4-methyl styrene + EDA; 4, α-methyl styrene + EDA; 5, α-methyl styrene + EDA (after 3 cycles and washing in 1,2-dichloroethane); characteristic bands of cyclopropanation products (pure cyclopropanes) at 2980 and 1730 cm⁻¹.

Figure S3. CO-DRIFT spectra of: 1, 1 / Davisil_1; 2, 1 / MCM-41_A_1; 3, 1 / SBA-15_B_2 samples after catalysis.

References