ZnNi Alloy Nanoparticles Grown on Reduced Graphene Oxide Nanosheets and Their Magnetic and Catalytic Properties

Jinglei Yang, Xiaoping Shen, Guoxing Zhu, Zhenyuan Ji and Hu Zhou

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China,

School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

Fig. S1 FESEM image of RGO nanosheets prepared in the absence of Zn(NO₃)₂·6H₂O and Ni(NO₃)₂·6H₂O with the same other experimental conditions.
Fig. S2 (a-e) UV−vis absorption spectra of the reduction reaction systems in the presence of RGO-ZnNi nanocomposites. (f) Plots of ln(At/A0) versus reaction time for the reduction of 4-NP catalyzed by different catalysts.
Fig. S3 (a-e) UV−vis absorption spectra of the reduction reaction systems in the presence of RGO-ZnNi nanocomposites. (f) Plots of $\ln(A_t/A_0)$ of 4-NP versus reaction time for the reduction of 4-NP catalyzed by different catalysts.