SUPPORTING INFORMATION

An electrochemical sensor of dopamine based poly(o-phenylenediamine) functionalized the electrochemically reduced graphene oxide

Xuexia Liu, a,b Hui Zhu, a Xiurong Yang* a

a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
b Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
* e-mail: xryang@ciac.jl.cn
Fig. S1. Cyclic voltammograms of (A) bare GCE and (B) E-RGO modified GCE dipped in PBS (0.1 M, pH 7.1) at the scan rate of 50 mV/s: (black curve) in the absence of AA, UA and DA; (red curve): in the presence of 1 mM AA and 1 mM UA; (blue curve) in the presence of 1 mM AA, 1 mM UA and 100 μM DA.
Fig. S2. Cyclic voltammograms of 300 μM of DA at PO/PD/E-RGO modified GCE in 0.1 M PBS (pH=7.1) at different scan rates.
Fig. S3. Cyclic voltammograms of 0.1 mM DA on the PoPD/E-RGO modified GCE in 0.1M PBS at different pH values. Scan rate: 50 mV/s.
Fig. S4. The stability of PoPD/E-RGO modified GCE for 9 measurements.
Fig. S5. DPV peak currents of different concentrations of DA in human urine sample. *Inset:* the calibration curve of DA.
Fig. S6. DPV peak currents of different concentrations of DA in human urine sample: (curve a) 0 μM, (curve b) 50 μM, (curve c) 150 μM, (curve d) added 40 μL urine sample.