Supporting Information

Solution-processed Cu$_2$ZnSnS$_4$ absorbers prepared by appropriate inclusion and removal of thiourea for thin film solar cells

§Si-Nae Parka, §Shi-Joon Sunga, Dae-Ho Sona, Dae-Hwan Kima, Mungunshagai Gansukhb, Hyeonsik Cheongb, JunHo Kimc, Jin-Kyu Kangaa

aAdvanced Convergence Research Center, Daegu Gyeongbuk Institute of Science & Technology
223 Sang-Ri, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Republic of Korea

bDepartment of Physics, Sogang University
35 Baekbeom-ro, Mapo-gu, Seoul 121-742, Republic of Korea

cDepartment of Physics, Incheon National University
12-1 Songdo-dong, Yeonsu-gu, Incheon 406-772, Republic of Korea

Corresponding author e-mail: appolon@dgist.ac.kr
Figure S1. Component depth profile of a sulphurized CZTS thin film pre-annealed at 350°C by Auger Electron Spectroscopy (AES)

Figure S2. Raman spectra of a sulphurized CZTS thin film pre-annealed at 350°C in a range of 200–2100 nm by using 632.8-nm-wavelength He-Ne laser and as a light source.
Figure S3. External Quantum Efficiency (EQE) curve of a CZTS thin film solar cell pre-annealed at 350°C.