Supporting Information

Nanocomposite of Carbon Quantum Dots and TiO$_2$ Nanotube Arrays:
Enhancing Photoelectrochemical and Photocatalytic Properties

Mingxuan Sun1, Xiaoqing Ma1, Xi Chen1, Yujun Sun1, Xiaoli Cui*, Yuehe Lin2

1. Department of Materials Science, Fudan University, Shanghai 200433, China
2. School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 USA

Corresponding author: Xiaoli Cui,
Department of Materials Science, Fudan University Shanghai, 200433 (P R China),
E-mail: xiaolicui@fudan.edu.cn
Tel/Fax: 86-21-65642397
Table of contents (9 pages, 7 figures)

Figure S1. The atomic percentage of O/C for graphite powders and CQDs

Figure S2. FT-IR spectra of CQDs

Figure S3. Raman spectra of TiO$_2$ (a) and CQDs/TiO$_2$ (b) nanotubes

Figure S4. SEM images of CQDs/TiO$_2$ nanotubes

Figure S5. The transient photocurrent response of TiO$_2$ (a) and CQDs/TiO$_2$ (b) nanotubes electrodes under UV-Vis illumination

Figure S6. Variation of the open circuit potential of TiO$_2$ (a) and CQD/TiO$_2$ (b) nanotubes electrodes under UV-Vis illumination

Figure S7. Photocurrent density-photovoltage (J-V) curves for the CQDs-sensitized solar cell.
Figure S1. The atomic percentage of O/C for graphite powders and CQDs.
Figure S2. FT-IR spectra of CQDs
Figure S3. Raman spectra of TiO$_2$ (a) and CQDs/TiO$_2$ (b) nanotubes
Figure S4. SEM images of CQDs/TiO$_2$ nanotubes
Figure S5. The transient photocurrent response of TiO$_2$ (a) and CQDs/TiO$_2$ (b) nanotubes electrodes under UV-Vis illumination
Figure S6. Variation of the open circuit potential of TiO$_2$ (a) and CQD/TiO$_2$ (b) nanotubes electrodes under UV-Vis illumination.
Figure S7. Photocurrent density-photovoltage (J-V) curves for the CQDs-sensitized solar cell.