Support information for

Study on the microheterogeneity of aqueous alcohol solutions:
formation mechanism of inner pores of ZnO nanostructures

Yong Jia,ab Xin-Yao Yu, b Tao Luo, b Zhen Jin, b Bai Sun, b Jin-Huai Liu b and Xing-Jiu Huang* b

a Institute of Pharmaceutical Chemistry, Department of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230031, People’s Republic of China

b Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
Fig. S1 FESEM (a) and TEM (b) images of the ZnO prepared in pure water.

Fig. S2 XRD patterns of the as-prepared ZnO products synthesized in pure water (line A), in mixed ethanol and water at room temperature (line B), and in mixed ethanol and water at 60 °C (line C).
Fig. S3 TEM images of the ZnO nanoplates synthesized in the mixed ethanol and water at 60 °C.

Fig. S4 Transmission FTIR (a) and ATR-FTIR (b) spectra of ZnO synthesized with the presence of ethylene glycol.
Fig. S5 TEM images of the ZnO prepared in mixed n-propanol and water.

Fig. S6 ATR-FTIR and transmission FTIR spectra of ZnO synthesized with the presence of n-propanol (a, b) and isopropanol (c, d).
Fig. S7 TEM images of the ZnO prepared in mixed 1, 2-propylene glycol and water.

Fig. S8 TEM images of the ZnO prepared in mixed glycerol and water.
Fig. S9 HRTEM images of the ZnO prepared in mixed glycerol and water.
Fig. S10 ATR-FTIR and transmission FTIR spectra of ZnO synthesized with the presence of 1, 2-propylene glycol (a, b) and glycerol (c, d).

Fig. S11 TEM images of the ZnO nanoplates prepared in mixed n-butanol and water.