Supplementary Material

Toxicity and biodegradability of dicationic ionic liquids

Stephanie Steudte, Steve Bemowsky, Maria Mahrova, Ulrike Bottin-Weber, Emilia Tojo-Suarez, Piotr Stepnowski, Stefan Stolte*

*Corresponding author: Email: sstolte@uni-bremen.de, Tel. +49 421 218-63370, Fax: +49 421 218-98-63370

Synthesis of dicationic ionic liquids

1-methylimidazole and 1-methylpyrrolidinium were distilled over calcium hydride prior to use. Copper(I)bromide was purified by stirring in acetic acid for 2 days, washed with dry diethyl ether several times and dried in vacuum under an argon atmosphere. All other substances were used without further purification.

1H NMR and 13C NMR spectra were recorded on a Varian Gemini 2000 FT-NMR spectrometer (400 MHz) and a Varian unity Inova 500 (500 MHz). MestRec-C software (version 4.9.9.6) was used for data interpretation. Deuterated chloroform (CDCl$_3$) and dimethylsulfoxide (DMSO-d$_6$) were used as solvents. All chemical shifts (δ) are relative to tetramethylsilane (TMS) and referenced to the significant solvent signals. Mass spectrometry measurements were performed on ESI-TOF BrukerDaltonics spectrometer. Melting points were observed with a Büchi B-540 apparatus (BÜCHI Labortechnik GmbH, Essen, Germany) at a 2 °C min$^{-1}$ heating rate.

1. General procedure A for the synthesis of 1-6

The synthesis was described in [1–3]. A mixture of dihaloalkane and 3 mol equivalent of 1-methylimidazole (for 1-4), 1-butylimidazole (for 5) or 1-hexylimidazole (19) (for 6) in acetonitrile (toluene was used for 1) was refluxed for 24-72 h. After cooling to room temperature the solids were collected by filtration, washed with THF (toluene was used for 1) and ethyl acetate and dried under vacuum.

1.1. Synthesis of 1,1-bis(3-methylimidazolium-1-yl)methane diiodide (1)

3.3 g (12.4 mmol, 1.0 mL) diiodomethane and 3.1 g (38.2 mmol, 1.1 mL) 1-methylimidazole in 8 mL toluene were reacted according to the general procedure A (see 1.) to yield 1.8 g (47 % of the theoretical value) of 1 as a yellowish solid (melting point >260 °C, decomposition, as reported in [1]).

NMR: 1H (DMSO-d$_6$), δ (ppm): 9.37 (s, 2H), 7.97 (t, J=1.7 Hz, 2H), 7.80 (t, J=1.6 Hz, 2H), 6.65 (s, 2H), 3.90 (s, 6H); as reported in [1]. 13C (DMSO-d$_6$), δ (ppm): 137.9, 124.3, 121.8, 58.0, 36.3.

1.2. Synthesis of 1,2-bis(3-methylimidazolium-1-yl)ethane dibromide (2)
2.0 g (10.4 mmol, 0.9 mL) dibromoethane and 2.9 g (34.7 mmol, 1.0 mL) 1-methylimidazole in 12 mL acetonitrile were reacted according to the general procedure A (see 1.) to yield 2.4 g (64% of the theoretical value) of 2 as a white solid (melting point 230 °C, similar as reported in [2]).

NMR: \(^1\)H (DMSO-d\(_6\)), \(\delta\) (ppm): 9.26 (s, 2H), 7.76 (t, \(J=1.6\) Hz, 2H), 7.74 (t, \(J=1.7\) Hz, 2H), 4.77 (s, 4H), 3.86 (s, 6H); similar as reported in [2]. \(^{13}\)C (DMSO-d\(_6\)), \(\delta\) (ppm): 137.0, 123.6, 122.1, 48.1, 35.8; as reported in [2].

1.3. Synthesis of 1,3-bis(3-methylimidazolium-1-yl)propane dibromide (3)

1.6 g (7.9 mmol, 0.8 mL) dibromopropane and 2.0 g (24.3 mmol, 0.7 mL) 1-methylimidazole in 10 mL acetonitrile were reacted according to the general procedure A (see 1.) to yield 1.8 g (61% of the theoretical value) of 3 as a white solid (melting point 161 °C, similar as reported in [3]).

NMR: \(^1\)H (DMSO-d\(_6\)), \(\delta\) (ppm): 9.34 (s, 2H), 7.87 (t, \(J=1.8\) Hz, 2H), 7.77 (t, \(J=1.7\) Hz, 2H), 4.27 (t, \(J=6.9\) Hz, 4H), 3.87 (s, 6H), 2.41 (quin, \(J=6.9\) Hz, 2H); similar as reported in [3]. \(^{13}\)C (DMSO-d\(_6\)), \(\delta\) (ppm): 136.8, 123.6, 122.1, 45.5, 35.8, 29.4.

1.4. Synthesis of 1,6-bis(3-methylimidazolium-1-yl)hexane dibromide (4)

1.6 g (6.5 mmol, 1.0 mL) dibromohexane and 1.7 g (20.8 mmol, 0.6 mL) 1-methylimidazole in 10 mL acetonitrile were reacted according to the general procedure A (see 1.) to yield 1.3 g (47% of the theoretical value) of 4 as a white solid (melting point 157 °C, similar as reported in [3]).

NMR: \(^1\)H (DMSO-d\(_6\)), \(\delta\) (ppm): 9.27 (s, 2H), 7.83 (t, \(J=1.7\) Hz, 2H), 7.74 (t, \(J=1.7\) Hz, 2H), 4.18 (t, \(J=7.2\) Hz, 4H), 3.86 (s, 6H), 1.78 (m, 4H), 1.26 (m, 4H); similar as reported in [1,3]. \(^{13}\)C (DMSO-d\(_6\)), \(\delta\) (ppm): 136.4, 123.5, 122.2, 48.5, 35.7, 29.0, 24.7.

1.5. Synthesis of 1,2-bis(3-butylimidazolium-1-yl)ethane dibromide (5)

2.6 g (13.9 mmol, 1.2 mL) dibromoethane and 4.7 g (38.1 mmol, 5.0 mL) 1-butylimidazole in 15 mL acetonitrile were reacted according to the general procedure A (see 1.) to yield 3.7 g (65% of the theoretical value) of 5 as a white solid (melting point 167 °C, as reported in [2]).

NMR: \(^1\)H (DMSO-d\(_6\)), \(\delta\) (ppm): 9.36 (s, 2H), 7.86 (t, \(J=1.7\) Hz, 2H), 7.77 (t, \(J=1.7\) Hz, 2H), 4.78 (s, 4H), 4.17 (t, \(J=7.2\) Hz, 4H), 1.74 (m, 4H), 1.19 (m, 4H), 0.88 (t, \(J=7.4\) Hz, 6H); similar as reported in [2]. \(^{13}\)C (DMSO-d\(_6\)), \(\delta\) (ppm): 136.5, 122.7, 122.4, 48.6, 48.2, 31.1, 18.6, 13.2.

1.6. Synthesis of 1,2-bis(3-hexylimidazolium-1-yl)ethane dibromide (6)

1-hexylimidazole (19) was prepared as follows: 1.5 g (22.2 mmol) imidazole was dissolved in 1.1 g 50% NaOH solution (26.7 mmol). 3.7 g (22.1 mmol, 3.1 mL) 1-bromohexane and 15 mL THF were added and the mixture refluxed for 3 days. After cooling to room temperature, THF was removed by rotary evaporation and the residue extracted 3 times with CH\(_2\)Cl\(_2\)/H\(_2\)O. The combined organic phases were washed with water and dried over anhydrous Na\(_2\)SO\(_4\). After filtration the organic solvent was removed by rotary evaporation and the product dried under vacuum. \(^1\)H-NMR indicated the presence of starting material. The crude product was therefore purified by column chromatography through a silica-gel column with CH\(_2\)Cl\(_2\)/CH\(_3\)OH (10:1) to yield 2.2 g (66% of the theoretical value) of 19 as a yellowish oil.
NMR: 1H (CDCl$_3$), δ (ppm): 7.46 (s, 1H), 7.05 (s, 1H), 6.90 (s, 1H), 3.92 (t, J=7.2 Hz, 2H), 1.77 (m, 2H), 1.29 (m, 6H), 0.88 (t, J=6.8 Hz, 3H); exactly as reported in [2]. 13C (DMSO-d$_6$), δ (ppm): 137.0, 129.3, 118.7, 47.0, 31.2, 31.0, 26.2, 22.4, 13.9.

1.1 g (5.8 mmol, 0.5 mL) dibromoethane and 2.1 g (14.1 mmol) 19 in 10 mL acetonitrile were reacted according to the general procedure A (see 1.) to yield 1.9 g (67% of the theoretical value) of 6 as a white solid (melting point 231 °C, similar as reported in [2]).

NMR: 1H (DMSO-d$_6$), δ (ppm): 9.27 (s, 2H), 7.84 (t, J=1.7 Hz, 2H), 7.73 (t, J=1.7 Hz, 2H), 4.75 (s, 4H), 4.15 (t, J=7.3 Hz, 4H), 1.75 (m, 16H), 1.26 (m, 2H); similar as reported in [2]. 13C (DMSO-d$_6$), δ (ppm): 136.5, 122.7, 122.4, 48.9, 48.3, 30.5, 29.1, 25.0, 21.8, 13.8 corresponding to the values reported in [2].

2. General procedure B for the synthesis of 7 and 8

The synthesis was described in [4]. TEG was functionalized to α,ω-dichloro-3,6,9-trioxaundecane (20) as described in [5].

NMR: 1H (CDCl$_3$), δ (ppm): 3.74 (t, J=5.79 Hz, 4H), 3.69-3.63 (m, 8H), 3.61 (t, J=5.93 Hz, 4H), 13C (CDCl$_3$), δ (ppm): 70.7, 71.4, 42.8.

About 1 mmol of 20 was added to 3 mmol of the corresponding amine in 5 mL of toluene. The reaction mixture was heated under reflux at 110 °C for 20 h. After cooling to room temperature the lower phase was separated and washed three times with 5 mL of toluene. The viscous liquid obtained was dissolved in a small amount of methanol and precipitated in ethyl acetate. After decantation of the ethyl acetate the yellowish product was dried under high vacuum.

2.1. Synthesis of bis-1,11-[(3-methyl-1H-imidazolium-1-yl)]-(3,6,9-trioxaundecane) dichloride (7)

20 (0.23 g, 1 mmol) and 1-methylimidazole (0.24 g, 3 mmol) were reacted according to the general Procedure B (see 2.) to yield 0.32 g (85% of the theoretical value) of 7.

NMR: 1H (DMSO-d$_6$), δ (ppm): 9.3 (s, 2H), 7.78 (s, 2H), 7.75 (s, 2H), 4.37 (t, J=4.9 Hz, 4H), 3.88 (s, 6H), 3.77 (t, J=3.4 Hz, 4H), 3.55–3.52 (m, 4H), 3.48–3.46 (m, 4H), 13C (DMSO-d$_6$), δ (ppm): 136.7, 123.1, 122.4, 69.4, 68.0, 48.5, 35.6.

MS: ESI-TOF, m/z (%), negative mode: found: 429.11 (100) [C$_{19}$H$_{28}$Cl$_2$N$_4$O$_3$Cl$_3$], calculated: 429.12.

2.2. Synthesis of bis-1,11-[(1-methyl-pyrrolidinium-1-yl)]-(3,6,9-trioxaundecane) dichloride (8)

20 (0.23 g, 1 mmol) and 1-methylpyrrolidine (0.26 g, 3 mmol) were reacted according to the general Procedure B (see 2.) to yield 0.32 g (82% of the theoretical value) of 8.

NMR: 1H (DMSO-d$_6$), δ (ppm): 4.39 (t, J=4.4 Hz, 4H), 3.64 (t, J=4.4 Hz, 4H), 3.60–3.51 (m, 16H), 3.08 (s, 6H), 2.15 (b, 8H). 13C (DMSO-d$_6$), δ (ppm): 69.3, 64.4, 63.9, 61.7, 47.9, 20.8.

MS: ESI-TOF, m/z (%), negative mode: found: 435.18 (100) [C$_{19}$H$_{38}$Cl$_2$N$_4$O$_4$], calculated: 435.19.

3. General procedure C for the synthesis of 9 and 10

The synthesis was described in [4]. HEG was functionalized to α,ω-dibromo-3,6,9,12,15-pentoaxaheptadecane (21) as described in [5] and further modified to α,ω-diazido-3,6,9,12,15-
pentaoxaheptadecane (22): 21 (5.19 g, 16.26 mmol) was dissolved in N,N-dimethylformamide followed by the slow addition of sodium azide (5.29 g, 81.30 mmol). The reaction mixture was then stirred for 72 h at 70 °C, filtered, after which the solvent was removed under reduced pressure. The product was purified by column chromatography through a silica-gel column with CHCl₃:CH₃OH (10:1) to yield 5.0 g (93 % of the theoretical value) of 22 as a yellow liquid.

NMR: ¹H (CDCl₃), δ (ppm): 3.58 (m, 20H), 3.30 (t, J=5.0 Hz, 4H), 3.85 (s, 6H), 3.79 (t, J=5.3 Hz, 4H), 2.31 (s, 6H), 5.18 (d, J=2.6 Hz, 2H), 3.86 (s, 3H), 3.81 (t, J=2.6 Hz, 1H), 2.30 (s, 3H).

22 (1.0 mol equivalent), alkyne ligands (23 and 24) (2 mol equivalents), DIPEA (6 mol equivalents) and copper(II)bromide (CuBr) (0.2 mol equivalents with respect to 22) were dissolved in a mixture of the solvents H₂O/DMF (1:1) under an atmosphere of nitrogen and then heated in an oil bath (70 °C). On completion of the reaction the solvent was removed under reduced pressure. The crude product was dissolved in methanol and filtered through Al₂O₃ to remove excess CuBr. Subsequently, the solvent was evaporated and the product was purified by precipitation with CH₃OH:ethyl acetate (0.5:5). The desired product was dried under high vacuum for 24 h.

3.1. Synthesis of bis-1,17-[4-(3-methyl-1H-imidazolium-1-yl)methylene-1H-1,2,3-triazole-1-yl]-\(\text{3,6,9,12,15-pentaoxaheptadecane}\) dis(methanesulfonate) (9)

3-Methylimidazolium-1-propargyl methanesulfonate (23) was prepared as follows: 1-Methylimidazole (1.02 g, 12.43 mmol) and propargyl methanesulfonate (1.39 g, 10.36 mmol) were reacted for 20 h in dry toluene (25 mL) to yield 2.20 g (98 % of the theoretical value) of 23 as a yellow solid.

NMR: ¹H (DMSO-d₆), δ (ppm): 9.22 (s, 1H), 7.78 (t, J=1.8 Hz, 1H), 7.74 (t, J=1.8 Hz, 1H), 5.18 (d, J=2.6 Hz, 2H), 3.86 (s, 3H), 3.81 (t, J=2.6 Hz, 1H), 2.30 (s, 3H).

Compound 9 was prepared according to the general Procedure C: a mixture of 22 (0.15 g, 0.45 mmol), 23 (0.19 g, 0.90 mmol), DIPEA (0.35 g, 2.70 mmol), and CuBr (0.013 g, 0.09 mmol) in H₂O/DMF (4 mL) was reacted to yield 0.34 g (98 % of the theoretical value) of 9 as a viscous brown liquid.

NMR: ¹H (DMSO-d₆), δ (ppm): 9.23 (s, 2H), 8.25 (s, 2H), 7.75 (t, J=1.8 Hz, 2H), 7.70 (t, J=1.8 Hz, 2H), 5.53 (s, 4H), 4.53 (t, J=5.3 Hz, 4H), 3.85 (s, 6H), 3.79 (t, J=5.3 Hz, 4H), 3.47 (m, 16H), 2.31 (s, 6H).

MS: ESI-TOF, m/z (%), negative mode: found: 859.26 (100) [C₃₃H₄₅N₁₀O₁₄S₃]⁻, 94.97 [CH₃OS]⁻, calculated: 859.27, 94.98.

3.2. Synthesis of bis-1,17-[(methyl-pyrrolidinium-1-yl)methylene-1H-1,2,3-triazole-1-yl]-\(\text{3,6,9,12,15-pentaoxaheptadecane}\) dis(methanesulfonate) (10)

3-Methylimidazolium-1-propargyl methanesulfonate (24) was prepared as follows: 1-Methylpyrrolidinium (1.74 g, 20.46 mmol) and propargyl methanesulfonate (1.83 g, 13.64 mmol) were reacted for 24 h in dry toluene (40 mL) to yield 2.74 g (92 % of the theoretical value) of 24 as a yellowish solid.

NMR: ¹H (DMSO-d₆), δ (ppm): 4.39 (d, J=2.5 Hz, 2H), 3.99 (t, J=2.5 Hz, 1H), 3.51 (m, 4H), 3.10 (s, 3H), 2.29 (s, 3H), 2.10 (m, 4H).

\(\text{¹C (DMSO-d₆), δ (ppm): 82.4, 73.8, 63.7, 52.8, 49.4, 22.0.}\)
Compound 10 was prepared according to the general Procedure C: a mixture of 22 (0.15 g, 0.45 mmol), 24 (0.20 g, 0.90 mmol), DIPEA (0.35 g, 2.70 mmol), and CuBr (0.013 g, 0.09 mmol) in H$_2$O/DMF (4 mL) was reacted to yield 0.35 g (100 % of the theoretical value) of 10 as a yellow viscous liquid.

NMR: 1H (DMSO-d_6), δ (ppm): 8.40 (s, 2H), 4.67 (s, 4H), 4.58 (t, $J=5.2$ Hz, 4H), 3.82 (t, $J=5.2$ Hz, 4H), 3.49 (m, 24H), 2.96 (s, 6H), 2.30 (s, 6H), 2.09 (m, 8H). 13C (DMSO-d_6), δ (ppm): 136.4, 128.7, 70.2, 69.0, 63.3, 56.7, 50.2, 48.6, 21.7.

MS: ESI-TOF, m/z (%), negative mode: found: 865.34 (100) [C$_{31}$H$_{61}$N$_8$O$_{14}$S$_3$]$^{-}$, 94.97 [CH$_3$O$_3$S]$^{-}$, calculated: 865.35, 94.98.
Tab. S1 Results for biodegradation and sludge respiration inhibition of DILs and reference compounds

<table>
<thead>
<tr>
<th>#</th>
<th>structure</th>
<th>biodegradation [%]</th>
<th>primary degradation test</th>
<th>O₂ consumption test (OECD 301F)</th>
<th>IC₅₀ [µM] sludge inhibition test (OECD 209)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref 1</td>
<td></td>
<td>100</td>
<td>n.d.⁴</td>
<td>n.d.⁴</td>
<td>n.d.⁴</td>
</tr>
<tr>
<td>Ref 2</td>
<td></td>
<td>100</td>
<td>n.d.⁴</td>
<td>1380 (1047-1819)⁵</td>
<td></td>
</tr>
<tr>
<td>Ref 3</td>
<td></td>
<td>n.d.⁴</td>
<td>84 ± 0.3</td>
<td>n.d.⁴</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>< 5</td>
<td>n.d.⁴</td>
<td>> 1000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>< 5</td>
<td>n.d.⁴</td>
<td>> 1000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>< 5</td>
<td>n.d.⁴</td>
<td>> 1000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>< 5</td>
<td>0 ± 0.5</td>
<td>> 1000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>< 5</td>
<td>n.d.⁴</td>
<td>> 1000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>< 5</td>
<td>2 ± 2.5</td>
<td>380 (279-507)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>< 5</td>
<td>n.d.⁴</td>
<td>> 1000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>< 5</td>
<td>n.d.⁴</td>
<td>> 1000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>< 5</td>
<td>n.d.⁴</td>
<td>> 1000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>< 5</td>
<td>14 ± 2</td>
<td>> 1000</td>
<td></td>
</tr>
</tbody>
</table>

⁴ not determined
⁵ data taken from [6]
References

