Supplementary Information

Destabilization of LiBH₄ dehydrogenation through H⁺-H⁻ interactions by cooperating with alkali metal hydroxides

Weitong Cai, Hui Wang, Dalin Sun, Qingan Zhang, Xiangdong, Yao and Min Zhu

a School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.

b Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, Guangzhou 510640, P. R. China.

c Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.

d School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China.

e Queensland Micro- and Nanotechnology Centerer (QMNC), Griffith University, Brisbane, Australia.

* Corresponding authors:

Prof. M. Zhu
E-mail: memzhu@scut.edu.cn
Tel: +86-20-87113924

Prof. D. L. Sun
E-mail: dlsun@fudan.edu.cn
Tel: +86-21-65642873

Prof. X. D. Yao
E-mail: x.yao@griffith.edu.au
Supplementary Information

Figure S1 XRD patterns of ball-milled (a): LiOH, (b): NaOH, (c): KOH.

Figure S2 TPD-MS results of ball-milled (a): LiOH, (b): NaOH, (c): KOH. Hydrogen was liberated from hydroxides at elevated temperatures > 400 °C.