Electronic Supplementary Information

Systematic stability investigation of perfluorosulfonic acid membranes with varying ion exchange capacities for fuel cell application

Yan Zhua, Hong Lia, Junke Tangb, Li Wangb, Libing Yanga, Fei Aia, Chaonan Wanga, Wang Zhang Yuana*, and Yongming Zhanga*

a School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
b R&D Center of Dongyue Group, Dongyue Shenzhou New Materials Co. Ltd., Zibo 256401, China

Corresponding authors: Tel: +86-21-34202613; Fax: +86-21-54742567.
E-mail: wzhyuan@sjtu.edu.cn (W.Z.Y.); ymzsjtu@gmail.com (Y.Z.).

Experimental

Surface morphology of the membranes

PFSA membranes with various IEC values were boiled in 3 vol\% H\textsubscript{2}O\textsubscript{2} solution and 1 M H\textsubscript{2}SO\textsubscript{4} at 80 \textdegree C for 1 h, respectively. And then, the membranes were boiled in deionized water for 1 h and repeatedly washed in fresh water until pH = 7. The treated membranes were dried in a vacuum oven at 80 \textdegree C for 2 h.

Surface morphology of all PFSA membranes before Fenton test was observed by scanning electron microscopy (SEM). Additionally, for better understanding the changes of the membranes during Fenton test, the morphology of the membranes after being immersed in 30 vol\% H\textsubscript{2}O\textsubscript{2} solution without addition of Fe2+ at 80 \textdegree C for 120 h was also examined. The results are depicted in Fig. S1. Clearly, all PFSA membranes before Fenton test show very smooth surfaces. There are also no obvious changes even when the membranes were immersed in H\textsubscript{2}O\textsubscript{2} solution for 120 h. The results indicate that the appearance of bubbles and pinholes on the membrane surfaces after Fenton test are caused by degradation rather than the self-swelling in pure H\textsubscript{2}O\textsubscript{2} solution. Therefore, the
damage degree of the membranes during Fenton test can be used to evaluate their chemical durability.

Fig. S1 SEM images of PFSA membranes with various IECs before Fenton test (left) and after being immersed in 30 vol% H₂O₂ solution for 120 h (right).