Highly Selective Direct Reductive Amidation of Nitroarenes with Carboxylic Acids using Cobalt(II) Phthalocyanine/PMHS

Vishal Kumar, Manoranjan Kumar, Sushila Sharma and Neeraj Kumar*

Natural Plant Products Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India

neerajnpp@rediffmail.com; neeraj@ihbt.res.in

Supporting information

Table of Contents

General experimental

Procedure for synthesis of metal phthalocyanines

General experimental procedure for reductive amidation of nitroarenes

Procedure for recyclability of the catalyst

Reductive amidation of nitrobenzene in different solvents using stoichiometric amount of carboxylic acids (Table S1)

Reductive amidation of nitrobenzene in different solvents in the presence of mineral acids using stoichiometric amount of carboxylic acids (Table S2)

Spectral data of isolated compounds

1H and 13C NMR spectra of synthesized compounds

HRMS (ESI) spectra of isolated compounds

Mechanistic investigation

References
General experimental

Metal salts used were purchased from Merck, Germany. Metal phthalocyanines were synthesized by a reported procedure with some modification and characterized by FTIR and UV-VIS spectroscopy. Silica gel (60-120 mesh) used for column chromatography was purchased from Sisco Research Laboratories Pvt. Ltd. India and all other chemicals were purchased from Spectrochem, India, Merck, Germany, and Sigma-Aldrich, USA and were used without further purification. NMR spectra were recorded on Bruker Avance-300/600 spectrometers. Mass spectra were recorded on QTOF-Micro of Waters Micromass and Maxis-Bruker. The GC-MS analysis was carried out on a Shimadzu (QP 2010) series Gas Chromatogram-Mass Spectrometer (Tokyo, Japan), AOC-20i auto-sampler coupled, and a DB-5MS capillary column, (30 m x 0.25 mm i.d., 0.25µm). The initial temperature of column was 70 °C held for 4 min. and was programmed to 230 °C at 4°C/min., then held for 15 min. at 230 °C; the sample injection volume was 2 µL in GC grade dichloromethane. Helium was used as carrier gas at a flow rate of 1.1 ml min⁻¹ on split mode (1: 50).

Procedure for synthesis of metal phthalocyanines

Metal phthalocyanines were synthesized by using a reported method with some modification.

Synthesis of Cobalt (II) phthalocyanine

A mixture of phthalimide (26.28 g, 0.18 mol), urea (55.2 g, 0.92 mol), CoCl₂.6H₂O (11.85 g, 0.05 mol) and ammonium molybdate (4.69 g, 0.0038 mol) was heated under microwave irradiation for 3 min. The reaction mixture was cooled to room temperature and in sequence washed with 5% NaOH, distilled water and 2% HCl and finally with distilled water again. After that the resulting solid was dissolved in minimum quantity of concentrated H₂SO₄ and poured in distilled water to precipitate the desired cobalt (II) phthalocyanine, which were then filtered to give 9.5 g (48.5% yield) of cobalt (II) phthalocyanine.

Synthesis of Iron, Nickel and Copper(II) phthalocyanines

Iron, Nickel and Copper(II) phthalocyanines were prepared from FeSO₄.7H₂O, NiCl₂ and CuSO₄.7H₂O respectively using same procedure as described above.

General experimental procedure for reductive amidation of nitroarenes with carboxylic acids

To a stirred suspension of CoPc (0.01 mmol) in carboxylic acid (2 mL) were added nitroarene (1.0 mmol) and PMHS (4.0 H equiv.) at room temperature and then the temperature was raised to 100 °C. On completion of the reaction (as monitored by TLC), reaction mixture was dried under vacuum and the
crude product was analyzed directly by GC-MS. For the purification of desired product column chromatography was carried out (n-hexane: ethyl acetate).

Procedure for recyclability of the catalyst

To a stirred suspension of CoPc (0.01 mmol) in acetic acid (2 mL) were added nitrobenzene (1.0 mmol) and PMHS (4.0 H equiv.) at room temperature and then the temperature was raised to 100 °C. After 12 h, the reaction mixture was analyzed by GC and GC-MS. Further, nitrobenzene (1.0 mmol) and PMHS (4.0 H equiv.) were added to the reaction mixture and stirred at 100 °C for 12 h. The same procedure was repeated for further cycles and excellent yield of product was observed up to three cycles, whereas in forth cycle the yield was reduced.

Table S1. Reductive amidation of nitrobenzene in different solvents using stoichiometric amount of carboxylic acids

<table>
<thead>
<tr>
<th>entry</th>
<th>carboxylic acid</th>
<th>solvent</th>
<th>yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AcOH</td>
<td>EtOH</td>
<td>nr</td>
</tr>
<tr>
<td>2</td>
<td>AcOH</td>
<td>MeOH</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>AcOH</td>
<td>MeCN</td>
<td>nr</td>
</tr>
<tr>
<td>4</td>
<td>AcOH</td>
<td>DMSO</td>
<td>nr</td>
</tr>
<tr>
<td>5</td>
<td>AcOH</td>
<td>DMF</td>
<td>nr</td>
</tr>
<tr>
<td>6</td>
<td>AcOH</td>
<td>Toluene</td>
<td>nr</td>
</tr>
<tr>
<td>7</td>
<td>AcOH</td>
<td>PEG-400</td>
<td>nr</td>
</tr>
<tr>
<td>8</td>
<td>AcOH</td>
<td>EG</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>AcOH</td>
<td>DCE</td>
<td>nr</td>
</tr>
<tr>
<td>10</td>
<td>PhCO₂H</td>
<td>EG</td>
<td>nr</td>
</tr>
<tr>
<td>11</td>
<td>Cinnamic acid</td>
<td>EG</td>
<td>nr</td>
</tr>
</tbody>
</table>

^aReaction conditions: nitrobenzene (1.0 mmol), carboxylic acid (5.0 mmol), CoPc (1 mol%), PMHS (4.0 H equiv.), ^bGC yield. DMSO = dimethylsulfoxide, DMF = dimethylformamide, PEG = polyethylene glycol, EG = ethylene glycol, DCE = dichloroethane.
Table S2 Reductive amidation of nitrobenzene in different solvents in the presence of mineral acids using stoichiometric amount of carboxylic acids\(^a\)

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>yield (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EtOH</td>
<td>nr</td>
</tr>
<tr>
<td>2</td>
<td>MeOH</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>MeCN</td>
<td>nr</td>
</tr>
<tr>
<td>4</td>
<td>DMSO</td>
<td>nr</td>
</tr>
<tr>
<td>5</td>
<td>DMF</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Toluene</td>
<td>nr</td>
</tr>
<tr>
<td>7</td>
<td>PEG-400</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>EG</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>DCE</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>EG</td>
<td>20(^c)</td>
</tr>
<tr>
<td>11</td>
<td>EG</td>
<td>12(^d)</td>
</tr>
<tr>
<td>12</td>
<td>EG</td>
<td>24(^e)</td>
</tr>
<tr>
<td>13</td>
<td>EG</td>
<td>7(^f)</td>
</tr>
<tr>
<td>14</td>
<td>EG</td>
<td>20(^g)</td>
</tr>
</tbody>
</table>

\(^a\)Reaction conditions: nitrobenzene (1.0 mmol), AcOH (3.0 mmol), CoPc (1 mol%), PMHS (4.0 H equiv.), 1M HCl in solvent (2 mL) at 100 °C for 12h. \(^b\)Isolated yield. \(^c\)1M HBr was used instead of HCl. \(^d\)2.0 mmol AcOH was used. \(^e\)5.0 mmol AcOH was used. \(^f\)0.5M HCl was used. \(^g\)2.0M HCl was used. nr = no reaction, DMSO = dimethylsulfoxide, DMF = dimethylformamide, PEG = polyethylene glycol, EG = ethylene glycol, DCE = dichloroethane.
Spectral data of isolated compounds

1. N-Acetylaniline (Table 2, entry 1)
 \[
 \begin{array}{c}
 \text{H} \quad \text{N} \quad \text{O} \\
 \end{array}
 \]

 \[\begin{array}{c}
 \text{H NMR (CDCl}_3, \text{ 300 MHz)} \delta 2.15 (s, 3H), 7.10 (t, 1H, J = 7.3 Hz), 7.28-7.33 (m, 2H), 7.52 (d, 2H, J = 7.7 Hz), 8.01 (brs, 1H); \text{ } \text{^{13}C NMR (CDCl}_3, \text{ 75 MHz)} \delta 24.8, 120.5, 124.6, 129.3, 138.4, 169.3; \text{ } \text{HRESIMS calcd for C}_8\text{H}_{10}\text{NO} [M+H]^+ 136.0762, \text{ found 136.0734.}\n \end{array}\]

2. N-Acetyl-4-fluoroaniline (Table 2, entry 2)
 \[
 \begin{array}{c}
 \text{F} \quad \text{H} \quad \text{N} \quad \text{O} \\
 \end{array}
 \]

 \[\begin{array}{c}
 \text{H NMR (CD}_3\text{OD, 300 MHz)} \delta 2.11 (s, 3H), 7.00-7.06 (m, 2H), 7.50-7.55 (m, 2H); \text{ } \text{^{13}C NMR (CD}_3\text{OD, 75 MHz)} \delta 22.6, 115.0, 115.3, 121.9, 122.0, 135.0, 158.0, 161.2, 170.5; \text{ } \text{HRESIMS calcd for C}_8\text{H}_8\text{N}_3\text{OS} [M+H]^+ 154.0668, \text{ found 154.0631.}\n \end{array}\]

3. N-Acetyl-4-chloroaniline (Table 2, entry 3)
 \[
 \begin{array}{c}
 \text{Cl} \quad \text{H} \quad \text{N} \quad \text{O} \\
 \end{array}
 \]

 \[\begin{array}{c}
 \text{H NMR (CD}_3\text{OD, 300 MHz)} \delta 2.09 (s, 3H), 7.20 (d, 2H, J = 8.8 Hz), 7.46 (d, 2H, J = 8.8 Hz); \text{ } \text{^{13}C NMR (CD}_3\text{OD, 75 MHz)} \delta 23.8, 121.6, 129.0, 129.2, 137.3, 170.4; \text{ } \text{HRESIMS calcd for C}_8\text{H}_9\text{ClNO} [M+H]^+ 170.0373, \text{ found 169.0348.}\n \end{array}\]

4. N-Acetyl-4-bromoaniline (Table 2, entry 4)
 \[
 \begin{array}{c}
 \text{Br} \quad \text{H} \quad \text{O} \\
 \end{array}
 \]

 \[\begin{array}{c}
 \text{H NMR (CD}_3\text{OD, 300 MHz)} \delta 2.04 (s, 3H), 7.29-7.38 (m, 4H); \text{ } \text{^{13}C NMR (CD}_3\text{OD, 75 MHz)} \delta 23.6, 116.5, 121.5, 131.6, 137.4, 169.8; \text{ } \text{HRESIMS calcd for C}_9\text{H}_9\text{N}_2\text{O} [M+H]^+ 213.9868, \text{ found 213.9811.}\n \end{array}\]

5. 4-(N-Acetylamino)toluene (Table 2, entry 5)
1H NMR (CD$_3$OD, 300 MHz) δ 2.15 (s, 3H), 2.31 (s, 3H), 7.10 (d, 2H, $J = 8.1$ Hz), 7.38 (d, 2H, $J = 8.1$ Hz), 7.69 (brs, 1H); 13C NMR (CD$_3$OD, 75 MHz) δ 21.2, 24.7, 120.5, 129.8, 134.2, 135.8, 168.9; HRESIMS calcd for C$_9$H$_{12}$NO [M+H]$^+$ 150.0919, found 150.0950.

6. 4-(N-Acetylamino)phenol (Table 2, entry 6)5

1H NMR (CD$_3$OD, 300 MHz) δ 2.09 (s, 3H), 6.71-6.76 (m, 2H), 7.28-7.32 (m, 2H); 13C NMR (CD$_3$OD, 75 MHz) δ 24.2, 116.9, 124.1, 132.4, 156.1, 172.1; HRESIMS calcd for C$_8$H$_{10}$NO$_2$ [M+H]$^+$ 152.0712, found 152.0729.

7. Methyl-3-(N-acetylamino)benzoate (Table 2, entry 7)6

1H NMR (CD$_3$OD, 300 MHz) δ 2.14 (s, 3H), 3.89 (s, 3H), 7.37-7.42 (m, 1H), 7.72-7.73 (m, 1H), 7.77-7.81 (m, 1H), 8.21 (s, 1H); 13C NMR (CD$_3$OD, 75 MHz) δ 22.8, 51.6, 120.8, 124.4, 124.8, 128.9, 130.9, 139.3, 167.2, 170.7; HRESIMS calcd for C$_{10}$H$_{12}$NO$_3$ [M+H]$^+$ 194.0817, found 194.0809.

8. 3-(N-Acetylamino)benzonitrile (Table 2, entry 8)1

1H NMR (CDCl$_3$, 600 MHz) δ 2.20 (s, 3H), 7.38-7.41 (m, 2H), 7.72 (d, 1H, $J = 6.6$ Hz), 7.89 (s, 1H), 7.93 (s, 1H); 13C NMR (CDCl$_3$, 150 MHz) δ 24.5, 112.8, 118.5, 122.8, 123.9, 127.6, 129.9, 138.8, 168.9; HRESIMS calcd for C$_9$H$_{10}$N$_2$O [M+H]$^+$ 161.0715, found 161.0704.

9. 4-(N-Acetylamino)acetophenone (Table 2, entry 9)7
1H NMR (CD$_3$OD, 300 MHz) δ 2.16 (s, 3H), 2.56 (s, 3H), 7.68-7.71 (m, 2H), 7.94-7.97 (m, 2H); 13C NMR (CD$_3$OD, 75 MHz) δ 23.0, 25.4, 119.0, 129.6, 132.6 143.7, 170.9, 198.4; HRESIMS calcd for C$_8$H$_8$N$_3$OS [M+H]$^+$ 178.0868, found 178.0851.

10. 1,4-Di-(N-acetylamino)benzene (Table 2, entry 10)5

1H NMR (DMSO-d$_6$, 600 MHz) δ 1.99 (s, 6H), 7.45 (s, 4H), 9.83 (s, 2H); 13C NMR (DMSO-d$_6$, 150 MHz) δ 24.3, 119.8, 135.0, 168.4; HRESIMS calcd for C$_{10}$H$_{13}$N$_2$O$_2$ [M+H]$^+$ 193.0977, found 193.0942.

11. 3-(N-Acetylamino)styrene (Table 2, entry 11)8

1H NMR (CD$_3$OD, 300 MHz) δ 2.13 (s, 3H), 5.24 (d, 1H, $J = 11.0$ Hz), 5.76 (d, 1H, $J = 17.5$ Hz), 6.66-6.75 (m, 1H), 7.16 (d, 1H, $J = 7.6$ Hz), 7.26 (m, 1H), 7.43 (d, 1H, $J = 8.0$ Hz), 7.65 (s, 1H); 13C NMR (CD$_3$OD, 75 MHz) δ 24.3, 114.8, 119.2, 121.0, 123.5, 130.4, 138.4, 140.1, 140.6, 172.1; HRESIMS calcd for C$_{10}$H$_{12}$NO [M+H]$^+$ 162.0919, found 162.0933.

12. N-Acetyl-3-nitroaniline (Table 2, entry 12)9

1H NMR (CD$_3$OD, 600 MHz) δ 2.15 (s, 3H), 7.50 (s, 1H), 7.82 (d, 1H, $J = 6.0$ Hz), 7.90 (d, 1H, $J = 6.0$ Hz), 8.57 (s, 1H); 13C NMR (CD$_3$OD, 150 MHz) δ 24.2, 115.6, 119.6, 126.6, 131.1, 141.6, 150.2, 172.3; HRESIMS calcd for C$_8$H$_9$N$_2$O$_3$ [M+H]$^+$ 181.0613, found 181.0637.

13. 1,4-Di-(N-acetylamino)benzene (Table 2, entry 13)5
1H NMR (DMSO-d$_6$, 300 MHz) δ 2.00 (s, 6H), 7.46 (s, 4H), 9.85 (s, 2H); 13C NMR (DMSO-d$_6$, 75 MHz) δ 24.1, 119.6, 134.8, 168.2; HRESIMS calcd for C$_{10}$H$_{13}$N$_2$O$_2$ [M+H]$^+$ 193.0977, found 193.0934.

14. 2-(N-Acetylamino)fluorine (Table 2, entry 14)10

1H NMR (CD$_3$OD, 300 MHz) δ 2.14 (s, 3H), 3.82 (s, 2H), 7.21-7.26 (m, 1H), 7.29-7.34 (m, 1H), 7.45-7.50 (m, 2H), 7.68-7.73 (m, 2H), 7.80 (s, 1H); 13C NMR (CD$_3$OD, 75 MHz) δ 24.0, 37.8, 118.2, 120.2, 120.5, 121.0, 126.1, 127.5, 127.9, 138.9, 139.3, 142.7, 144.6, 145.4, 171.7; HRESIMS calcd for C$_{15}$H$_{14}$NO [M+H]$^+$ 224.1075, found 224.1021.

15. 4-(N-Acetylamino)phthalide (Table 2, entry 15)11

1H NMR (DMSO-d$_6$, 600 MHz) δ 2.06 (s, 3H), 5.32 (s, 2H), 7.56 (d, 1H, J = 6.0 Hz), 7.75 (d, 1H, J = 6.0 Hz), 8.17 (s, 1H), 10.28 (s, 1H); 13C NMR (DMSO-d$_6$, 150 MHz) δ 24.1, 69.8, 114.0, 123.3, 125.2, 125.5, 140.1, 141.6, 168.9, 170.7; HRESIMS calcd for C$_{10}$H$_{10}$NO$_3$ [M+H]$^+$ 192.0661, found 192.0637.

16. 6-(N-Acetylamino)benzothiazole (Table 2, entry 16)12

1H NMR (CD$_3$OD, 300 MHz) δ 2.17 (s, 3H), 7.52 (dd, 1H, J = 1.8, 8.8 Hz), 7.95 (d, 1H, J = 8.8 Hz), 8.47 (d, 1H, J = 1.8 Hz), 9.11 (s, 1H); 13C NMR (CD$_3$OD, 75 MHz) δ 22.9, 112.5, 119.5, 122.7, 134.6, 137.0, 149.4, 154.9, 170.8; HRESIMS calcd for C$_9$H$_8$N$_2$OS [M+H]$^+$ 193.0436, found 193.0411.

17. 4-(N-Acetylamino)-2,1,3-benzothiadiazole (Table 2, entry 17)13
1H NMR (CD$_3$OD, 300 MHz) δ 2.31 (s, 3H), 7.58-7.63 (m, 1H), 7.68-7.71 (m, 1H), 8.32 (d, 1H, J = 7.1 Hz); 13C NMR (CD$_3$OD, 75 MHz) δ 24.4, 117.6, 118.3, 132.0, 132.2, 149.9, 156.8, 172.7; HRESIMS calcd for C$_8$H$_8$N$_3$OS [M+H]$^+$ 194.0388, found 194.0345.

18. 5-(N-Acetylamino)isoquinoline (Table 2, entry 18)14

1H NMR (CD$_3$OD, 300 MHz) δ 2.31 (s, 3H), 7.67-7.31 (m, 1H), 7.93-8.01 (m, 3H), 8.48 (d, 1H, J = 6.0 Hz), 9.26 (s, 1H); 13C NMR (CD$_3$OD, 75 MHz) δ 23.5, 117.5, 127.1, 128.2, 128.9, 130.8, 132.7, 134.0, 143.1, 153.6, 172.9; HRESIMS calcd for C$_{11}$H$_{11}$N$_2$O [M+H]$^+$ 187.0871, found 187.0886.

19. 4-(N-acetylamino)phthalimide (Table 2, entry 19)

1H NMR (DMSO-d$_6$, 300 MHz) δ 2.11 (s, 3H), 7.73 (d, 1H, J = 8.1 Hz), 7.80-7.84 (m, 1H), 8.12-8.13 (m, 1H), 10.52 (s, 1H), 11.56 (brs, 1H); 13C NMR (DMSO-d$_6$, 75 MHz) δ 24.1, 112.3, 123.0, 123.9, 126.2, 134.0, 144.6, 168.7, 168.9, 169.1.

20. 6-(N-Acetylamino)chromone (Table 2, entry 20)15

1H NMR (DMSO-d$_6$, 300 MHz) δ 2.07 (s, 3H), 6.30 (d, 1H, J = 6.0 Hz), 7.58 (d, 1H, J = 9.0 Hz), 7.88-7.92 (m, 1H), 8.24 (d, 1H, J = 6.0 Hz), 8.30 (s, 1H), 10.25 (s, 1H); 13C NMR (DMSO-d$_6$, 75 MHz) δ 24.8, 112.5, 114.0, 119.8, 125.2, 126.4, 137.4, 152.6, 157.5, 169.4, 171.1; HRESIMS calcd for C$_{11}$H$_{10}$NO$_3$ [M+H]$^+$ 204.0661, found 204.0643.
21. 4-(N-Acetylamino)chalcone (Table 2, entry 21)16

![Structural formula]

\(^1\)H NMR (CD\textsubscript{3}OD, 600 MHz) \(\delta\) 2.13 (s, 1H), 7.53 (d, 2H, \(J = 6.0\) Hz), 7.61-7.75 (m, 7H), 8.05 (d, 2H, \(J = 6.0\) Hz); \(^{13}\)C NMR (CD\textsubscript{3}OD, 150 MHz) \(\delta\) 23.9, 120.8, 121.5, 129.5, 129.6, 130.5, 131.6, 134.0, 139.4, 142.3, 145.8, 171.7, 192.2; HRESIMS calcd for C\textsubscript{10}H\textsubscript{12}NO\textsubscript{3} [M+H]+ 266.1181, found 266.1169.

22. N-Phenylpropanamide (Table 3, entry 3)5

![Structural formula]

\(^1\)H NMR (CD\textsubscript{3}OD, 300 MHz) \(\delta\) 1.20 (t, 3H, \(J = 7.5\) Hz), 2.39 (q, 2H, \(J = 7.5\) Hz), 7.08 (t, 1H, \(J = 7.4\) Hz), 7.27-7.32 (m, 2H), 7.54 (d, 2H, \(J = 7.7\) Hz); \(^{13}\)C NMR (CD\textsubscript{3}OD, 75 MHz) \(\delta\) 9.2, 30.0, 120.2, 124.0, 128.7, 138.9, 174.4; HRESIMS calcd for C\textsubscript{9}H\textsubscript{12}NO [M+H]+ 150.0919, found 150.0922.

23. N-Phenylbutanamide (Table 3, entry 4)17

![Structural formula]

\(^1\)H NMR (CD\textsubscript{3}OD, 600 MHz) \(\delta\) 0.99-1.00 (m, 3H), 1.71-1.72 (m, 2H), 2.33 (s, 2H), 7.07 (s, 1H), 7.28 (s, 2H), 7.53 (m, 2H); \(^{13}\)C NMR (CD\textsubscript{3}OD, 150 MHz) \(\delta\) 13.8, 20.1, 39.7, 121.1, 124.9, 129.6, 139.7, 174.4; HRESIMS calcd for C\textsubscript{10}H\textsubscript{14}NO [M+H]+ 164.1075, found 164.1054.
1H and 13C NMR spectra of isolated compounds

In 1H NMR spectra, peaks at δ 3.31 and 4.90 correspond to trace amount of protonated solvent in CD$_3$OD and peaks at δ 2.50 and 3.34 correspond to trace amount of protonated solvent in DMSO-d$_6$.

1. N-Acetylaniline in CDCl$_3$ (Table 2, entry 1)

1H NMR

13C NMR
2. *N*-Acetyl-4-fluoroaniline in CD$_3$OD (Table 2, entry 2)

\[
\begin{align*}
\text{H NMR} \\
\end{align*}
\]

\[
\begin{align*}
\text{C NMR} \\
\end{align*}
\]
3. \(N\)-Acetyl-4-chloroaniline in CD\(_3\)OD (Table 2, entry 3)

\[
\begin{align*}
\text{\(N\)-Acetyl-4-chloroaniline} \\
\end{align*}
\]

\(^1\)H NMR

\[
\begin{align*}
\text{\(^1\)H NMR} \\
\end{align*}
\]

\(^{13}\)C NMR

\[
\begin{align*}
\text{\(^{13}\)C NMR} \\
\end{align*}
\]
4. *N*-Acetyl-4-bromoaniline in CD$_3$OD (Table 2, entry 4)

\[
\begin{array}{c}
\text{Br} \\
\text{H NMR}
\end{array}
\]

1H NMR

\[
\begin{array}{c}
\text{C NMR}
\end{array}
\]

13C NMR
5. 4-(N-Acetylamino)toluene in CD$_3$OD (Table 2, entry 5)

\[
\begin{align*}
\text{H NMR} \\
\text{C NMR}
\end{align*}
\]
6. 4-(N-Acetylamino)phenol in CD$_3$OD (Table 2, entry 6)

\[
\text{HO}
\]
\[
\text{\textbullet}
\]
\[
\text{\textbullet}
\]

1H NMR

1C NMR
7. Methyl-3-(N-acetylamino)benzoate in CD$_3$OD (Table 2, entry 7)

![Chemical Structure Image]

1H NMR

1C NMR
8. 3-(N-Acetylamino)benzonitrile in CD$_3$OD (Table 2, entry 8)

H NMR

C NMR
9. 4-(N-Acetylamino)acetophenone in CD$_3$OD (Table 2, entry 9)

![Chemical structure of 4-(N-Acetylamino)acetophenone]

1H NMR

1C NMR
10. 1,4-Di-(N-acetylamino)benzene in DMSO-d$_6$ (Table 2, entry 10)

\[
\begin{align*}
\text{H NMR} & \\
\text{C NMR}
\end{align*}
\]
11. 3-(N-Acetylamino)styrene in CD$_3$OD (Table 2, entry 11)

HN

C

H NMR

13C NMR
12. \(N\)-Acetyl-3-nitroaniline in CD\(_3\)OD (Table 2, entry 12)

\[
\text{H NMR}
\]

\[
\text{C NMR}
\]
13. 1,4-Di-(N-acetylamino)benzene in DMSO-d$_6$ (Table 2, entry 13)

\[
\begin{align*}
\text{1H NMR} \\
\end{align*}
\]

\[
\begin{align*}
\text{13C NMR} \\
\end{align*}
\]
14. 2-(N-Acetylamino)fluorine in CD$_3$OD (Table 2, entry 14)

$\text{\includegraphics[width=0.5\textwidth]{an_image.png}}$

1H NMR

1C NMR
15. 4-(N-Acylamino)phthalide in DMSO-d$_6$ (Table 2, entry 15)

1H NMR

13C NMR
16. 6-(N-Acetylamino)benzothiazole in CD$_3$OD (Table 2, entry 16)

^1^H NMR

^1^C NMR
17. 4-(N-Acetylamo)-2,1,3-benzothiadiazole in CD$_3$OD (Table 2, entry 17)

^{1}H NMR

^{13}C NMR
18. 5-(N-Acetylamino)isoquinoline in CD$_3$OD (Table 2, entry 18)

\[
\begin{align*}
\text{H NMR} & \\
\text{C NMR} &
\end{align*}
\]
19. 4-(N-acetylamino)phthalimide in DMSO-d$_6$ (Table 2, entry 19)

1H NMR

1C NMR
20. 6-(N-Acetylamino)chromone in DMSO-d$_6$ (Table 2, entry 20)

\[
\begin{align*}
\text{H NMR} \\
\end{align*}
\]

\[
\begin{align*}
\text{C NMR} \\
\end{align*}
\]
21. 4-(N-Acetylamino)chalcone in CD$_3$OD (Table 2, entry 21)

\[\text{Chemical structure image} \]

1H NMR

1C NMR
22. *N*-Phenylpropanamide in CD$_3$OD (Table 3, entry 3)

\[
\text{\begin{tikzpicture}
\draw[thick] (0,0) .. controls (1,1) and (2,1) .. (3,0);
\end{tikzpicture}}
\]

1H NMR

\begin{center}
\includegraphics{h_nmr}
\end{center}

1C NMR

\begin{center}
\includegraphics{c_nmr}
\end{center}
23. *N*-Phenylbutanamide in CD$_3$OD (Table 3, entry 4)

\[
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{N} \\
\text{H} \\
\text{N} \\
\end{array}
\]

1H NMR

1C NMR
HRMS (ESI) of isolated compounds

1. N-Acetylaniline (Table 2, entry 1)

\[
\text{\includegraphics{image.png}}
\]
2. *N*-Acetyl-4-fluoroaniline (Table 2, entry 2)
3. *N*-Acetyl-4-chloroaniline (Table 2, entry 3)
4. *N*-Acetyl-4-bromoaniline (Table 2, entry 4)
5. 4-(N-Acetylamino)toluene (Table 2, entry 5)
6. 4-(N-Acetylamino)phenol (Table 2, entry 6)
7. 3-(N-Acetylamino)benzonitrile (Table 2, entry 8)
8. 4-(N-Acetylamino)acetophenone (Table 2, entry 9)
9. 1,4-Di-(N-acetylamino)benzene (Table 2, entry 10)
10. N-Acetyl-3-nitroaniline (Table 2, entry 12)
11. 1,4-Di-(N-acetylamino)benzene (Table 2, entry 13)
12. 2-\((N\text{-Acetylamino})\text{fluorine}\) (Table 2, entry 14)
13. 4-(N-Actylamino)phthalide (Table 2, entry 15)
14. 6-(N-Acetylamino)benzothiazole (Table 2, entry 16)
15. 4-(N-Acetylamino)-2,1,3-benzothiadiazole (Table 2, entry 17)
16. 6-(N-Acetylamino)chromone (Table 2, entry 20)
17. 4-(N-Acetylamino)chalcone (Table 2, entry 21)
18. N-Phenylpropanamide (Table 3, entry 3)
19. N-Phenylbutanamide (Table 3, entry 4)
Mechanistic study

Experimental procedure for reaction of PMHS with AcOH

PMHS (4.0 mmol) was treated with AcOH (2.0 mL) at 100 °C for 12 h. The solvent was evaporated under reduced pressure and resultant product was dissolved in CDCl$_3$ for NMR analysis.

Experimental procedure for reaction of PMHS with CoPc

PMHS (4.0 mmol) was treated with CoPc (1.0 mol%) at 100 °C for 12 h under solvent free conditions. The resultant product was dissolved in CDCl$_3$ for NMR analysis.

1HNMR spectrum of PMHS in CDCl$_3$
1HNMR spectrum of PMHS + AcOH reaction (600 MHz, CDCl$_3$)

1HNMR spectrum of PMHS + CoPc reaction (600 MHz, CDCl$_3$)
References