Colloidal synthesis of ultrathin γ-Fe$_2$O$_3$ nanoplates

Xiangui Ding,a Liu Bao,b Jiang Jiang,*b and Hongwei Gu*a

a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China 215123.

b i-Lab and Division of Nanobiomedicine, Suzhou Key Laboratory of Nanobiomedical Characterization, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, China 215123.

Electronic Supplementary Information

Fig. S1 (A) Magnetization measurements of γ-Fe$_2$O$_3$ nanoplates at room temperature (300 K); (B) Thermogravimetric analysis of the synthesized iron oxide nanoplates.
Fig. S2 TEM images of nanoplates synthesized under different reaction temperatures:

(A) 170 ºC, (B) 210 ºC, and (C) 320 ºC.

Fig. S3 FTIR spectra of iron oleate (I) (blue line) and that treated with 250 µL dodecanol (0.2 mmol iron oleate) (red line), and for reference purpose, pure dodecanol FTIR spectrum is shown in black. Upon addition of dodecanol, a new peak at 1589 cm⁻¹ was observed, indicating coordination mode of iron carboxylate has changed.
Fig. S4 TEM image showing iron oxide morphologies synthesized with iron oleate (I) without adding any surfactant molecules such as OA or sodium oleate.

![TEM image showing iron oxide morphologies synthesized with iron oleate (I) without adding any surfactant molecules such as OA or sodium oleate.](image)

Fig. S5 TEM images showing iron oxide morphologies synthesized with iron oleate (II) (A) and with the addition of sodium methoxide (B).

![TEM images showing iron oxide morphologies synthesized with iron oleate (II) (A) and with the addition of sodium methoxide (B).](image)