A facile synthesis of β-amino carbonyl compounds through an aza-Michael addition reaction under solvent-free conditions

Chao Huang,*a Yanqing Yin,a Jiahui Guo,a Jiong Wang,a Baomin Fan,a Lijuan Yang*a

aKey Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities, Kunming, 650500, China
bEngineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan University of Nationalities, Kunming, 650500, China
*Corresponding author. Tel.: +86 871 65910017; fax: +86 871 65910017.
E-mail: huang.chao@hotmail.com (C. Huang)

Supporting Information

Table of Contents

General Method...2
General Procedure for the Synthesis of oxanorbornene β-amino esters 3........................3
General Procedure for the Synthesis of β-enamine esters 4...3
Synthesis of β-amino carbonyl compounds 3h and 4a..3
1H and 13C NMR Spectra of Compounds 3a-3k, 4a-4f...5
References...20
General Method

All compounds were fully characterized by spectroscopic techniques. The NMR spectra were recorded on a Bruker-Avance 400 MHz spectrometer (\(^1\)H: 400 MHz, \(^{13}\)C: 100 MHz) with tetramethylsilane (TMS) as the internal standard (δ 0.0 ppm), chemical shifts (δ) are expressed in ppm, and J values are given in Hz. Deuterated CDCl\(_3\) was used as a solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using neutral alumina. The melting points were determined on an XT-4A melting point apparatus and are uncorrected. HRMS was performed on an Agilent LC-MSD TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on neutral alumina.

Preparation of diethyl 7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate 1.

Diethyl acetylenedicarboxylate 12 mmol and furan 60 mmol were placed in a sealed tube, which was heated at 100 °C for 20 hours. The reaction mixture was distilled under vacuum. The endoxide was obtained as a light yellow oil.
A schlenk was charged with 1 (0.4 mmol, 95.3 mg), amine 2 (0.8 mmol), and the solution was stirred for 1 minute to 6 days at room temperature until the 1 was completely consumed. The mixture was purified by flash column chromatography. The desired compounds (3a–3j) were formed from 1 in yields: 54-97%.

A Schlenk was charged with diethyl 7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate 1 (0.4 mmol, 95.3 mg), amine 2 (0.8 mmol), and the solution was stirred for 1 minute to 6 days at 90 °C until 1 was completely consumed. The mixture was purified by flash column chromatography. The desired compounds 4 were formed from 1 in yields 42-77%.

Synthesis of β-amino carbonyl compounds 3h and 4a
The β-amino carbonyl compound 4a was prepared during the formation of β-amino carbonyl compound 3h. According to experimental results (scheme 1), 4a and 5 can be obtained directly with 42% yield from oxabornene 1 and aniline 2a under room temperature without reagent and catalyst. Also, compound 4a and 5 were obtained from thermal degradation of 3h at 90 °C, identified by spectroscopy.

![Scheme 1. Synthesis of β-amino carbonyl compounds 3h and 4a](image)
Diethyl 2-(phenylamino)-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate (3h):

Yield 62%; White solid; mp: 107-108 °C; IR (KBr) (ν max, cm$^{-1}$) 3385, 2974, 2331, 1735, 1604, 1511, 1449, 1377, 1321, 1254, 1062, 1011, 859, 749, 689, 551 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$): δ 7.26-7.16 (2H, m), 6.84-6.80 (4H, m), 6.47-6.46 (1H, dd, J = 5.8, 1.9 Hz), 5.15-5.14 (1H, m), 5.06-5.05 (1H, m), 4.41 (1H, s), 4.20-4.09 (4H, m), 3.19 (1H, d, J = 4.4 Hz), 1.30 (3H, t, J = 7.2 Hz), 1.15 (3H, t, J = 7.1 Hz); 13C NMR (100 MHz, CDCl$_3$): δ 170.6, 169.8, 144.9, 138.3, 132.3, 129.1, 119.5, 115.8, 86.5, 80.6, 72.4, 61.9, 61.2, 58.2, 14.1, 14.0. HRMS (TOF ES$^+$): m/z calcd for C$_{18}$H$_{22}$NO$_5$ [(M+H)$^+$], 332.1492; found, 332.1483.

Diethyl 2-(phenylamino)maleate (4a):

Yield 77%; Yellow oil; IR (KBr) (ν max, cm$^{-1}$) 3279, 2984, 2344, 1735, 1668, 1607, 1498, 1382, 1274, 1208, 1137, 1039, 861, 755, 693, 553 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$): δ 9.68 (1H, s), 7.30-7.25 (2H, m), 7.11-7.07 (1H, m), 6.92 (2H, d, J = 7.7 Hz), 5.38 (1H, s), 4.22-4.13 (4H, m), 1.30 (3H, t, J = 7.1 Hz), 1.09 (3H, t, J = 7.1 Hz); 13C NMR (100 MHz, CDCl$_3$): δ 169.7, 164.5, 148.5, 140.5, 129.2, 124.3, 121.1, 93.9, 62.2, 60.1, 14.5, 13.7. HRMS (TOF ES$^+$): m/z calcd for C$_{14}$H$_{17}$NO$_4$Na$^+$ [(M+Na)$^+$], 286.1050; found, 286.1055.
1H and 13C NMR Spectra of Compounds 3a-3k, 4a-4f

Figure 1 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3a

Figure 2 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3a
Figure 3 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3b

Figure 4 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3b
Figure 5 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3c

Figure 6 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3c
Figure 7 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3d

Figure 8 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3d
Figure 9 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3e

Figure 10 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3e
Figure 11 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3f

Figure 12 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3f
Figure 13 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3g

Figure 14 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3g
Figure 15 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3h

Figure 16 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3h
Figure 17 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3i

Figure 18 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3i
Figure 19 1H NMR (400 MHz, CDCl$_3$) spectra of compound 4a

Figure 20 13C NMR (100 MHz, CDCl$_3$) spectra of compound 4a
Figure 21 1H NMR (400 MHz, CDCl$_3$) spectra of compound 4b

Figure 22 13C NMR (100 MHz, CDCl$_3$) spectra of compound 4b
Figure 23 1H NMR (400 MHz, CDCl$_3$) spectra of compound 4c

Figure 24 13C NMR (100 MHz, CDCl$_3$) spectra of compound 4c
Figure 25 1H NMR (400 MHz, CDCl$_3$) spectra of compound 4d

Figure 26 13C NMR (100 MHz, CDCl$_3$) spectra of compound 4d
Figure 27 1H NMR (400 MHz, CDCl$_3$) spectra of compound 4e

Figure 28 13C NMR (100 MHz, CDCl$_3$) spectra of compound 4e
Figure 29 1H NMR (400 MHz, CDCl$_3$) spectra of compound 4f

Figure 30 13C NMR (100 MHz, CDCl$_3$) spectra of compound 4f
References