Supporting information

Lanthanum based coordination polymers microplates using a “green” ligand EDTA with tailorable morphology and fluorescent property

Zhurui Shen,*,a, d Sisi He, a Pengcheng Yao, a Xun Lao, a Bin Yang, c Yejing Dai, a,* Xiaohong Sun a and Tiehong Chen b

a. Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University & School of material Science and Engineering, Tianjin University, Tianjin 300072, PR China, E-mail: shenzhurui@tju.edu.cn
b. Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, PR China
c. Shenyang Branch, Shimadzu (China) Co., LTD.
d. Jiangsu Province Key Laboratory of Fine Petrochemical
Figure S1. TGA curves of (a) La-EDTA CPs microplates and (b) Ce-EDTA CPs microplates.

Figure S2. The FT-IR spectrum of Ce-EDTA CPs microplates.
Figure S3. SEM images of La-EDTA CPs obtained (a) without hydrothermal treatment. After (b) 2 h, (c) 8 h and (d) 12 h reaction at 160 °C with the molar ratio of EDTA-2Na: La$^{3+}$=10: 8, and the La$^{3+}$ is 8 mmol. The white circles highlighted some microsticks of CPs.

Figure S4. The XRD patterns of La-EDTA CPs obtained after (a) 0 h, (b) 8 h and (c) 12 h, reaction at 160 °C with the molar ratio of EDTA-2Na: La$^{3+}$=10: 8, and the La$^{3+}$ is 8 mmol.