Figure S1: HER of Cu₂O (a) on glassy carbon (b) Platinum as electrode

Figure S2: OER of Cu₂O (a) on glassy carbon (b) Platinum as electrode
Figure S3: Photodegradation of Methylene blue with Cu$_2$O synthesized at 850 °C
(with light and with H$_2$O$_2$)

Figure S4: Photodegradation of Methylene blue with Cu$_2$O synthesized at 850 °C
(with light and without H$_2$O$_2$)
Figure S5: Photodegradation of Methylene blue with Cu$_2$O synthesized at 850 °C
(without light and with H$_2$O$_2$)

Figure S6: Photodegradation of Methylene blue with Cu$_2$O synthesized at 350 °C
(with light and with H$_2$O$_2$)
Figure S7: Photodegradation of Methylene blue with Cu$_2$O synthesized at 350 °C (with light and without H$_2$O$_2$)

Figure S8: Photodegradation of Methylene blue with Cu$_2$O synthesized at 850 °C (without light and with H$_2$O$_2$)
Figure S9: Photodegradation of Methylene blue with Cu$_2$O synthesized at 850 °C
(with light and with H$_2$O$_2$) cycle 1

Figure S10: Photodegradation of Methylene blue with Cu$_2$O synthesized at 850 °C
(with light and with H$_2$O$_2$) cycle 2
Figure S11: Photodegradation of Methylene blue with Cu$_2$O synthesized at 850 °C
(with light and with H$_2$O$_2$) cycle 3

Figure S12: Photodegradation of Methylene blue with Cu$_2$O synthesized at 850 °C
(with light and with H$_2$O$_2$) cycle 4
Figure S13: Photodegradation of Methylene blue with Cu$_2$O synthesized at 850 °C (with light and with H$_2$O$_2$) cycle 5

Figure S14: Adsorption of Methylene blue with Cu$_2$O