Supporting Information

Syntheses of mono- and diacylated bipyrrroles with rich substitution modes and development of a prodigiosin derivative as a fluorescent Zn(II) probe

Tao Hong, a Heli Song, a Xin Li, b Weibing Zhang, a and Yongshu Xie* a

a Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
b Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden

E-mail: yshxie@ecust.edu.cn

Contents

Characterization data for compounds 1-6 and 8-9 ... Pages S2-S11

Job’s plot, Determination of Kass for 9 with Zn2+ .. Pages S12

Detection limit of 9 ... Page S1

Titration of 9 with Zn2+ in HEPES buffer .. Page S13
Figure. S1. The 1H NMR spectrum of 1 in DMSO-d_6.

Figure. S2. The 13C NMR spectrum of 1 in DMSO-d_6.

Figure. S3. ESI-HRMS of 1 in MeOH.
Figure S4. The 1H-1H COSY NMR spectrum of 1 (500 MHz in DMSO-d_6 at 298K).

Figure S5. The 1H NMR spectrum of 2 in DMSO-d_6.

Figure S6. The 13C NMR spectrum of 2 in DMSO-d_6.

S3
Figure. S7. ESI-HRMS of 2 in MeOH.

Figure. S8. The 1H-1H COSY NMR spectrum of 2 (500 MHz in DMSO-d_6 at 298K).

Figure. S9. The 1H NMR spectrum of 3 in DMSO-d_6.
Figure. S10. The 13C NMR spectrum of 3 in DMSO-d_6.

Figure. S11. ESI-HRMS of 3 in MeOH.

Figure. S12. The 1H-1H COSY NMR spectrum of 3 (500 MHz in DMSO-d_6 at 298K).
Figure. S13. The 1H NMR spectrum of 4 in DMSO-d_6.

Figure. S14. The 13C NMR spectrum of 4 in DMSO-d_6.

Figure. S15. ESI-HRMS of 4 in MeOH.
Figure. S16. The $^1\text{H}-^1\text{H}$ COSY NMR spectrum of 4 (500 MHz in DMSO-d_6 at 298K).

Figure. S17. The ^1H NMR spectrum of 5 in DMSO-d_6.

Figure. S18. The ^{13}C NMR spectrum of 5 in DMSO-d_6.
Figure. S19. ESI-HRMS of 5 in MeOH.

Figure. S20. The 1H-1H COSY NMR spectrum of 5 (500 MHz in DMSO-d_6 at 298K).

Figure. S21. The 1H NMR spectrum of 6 in DMSO-d_6.
Figure. S22. The 13C NMR spectrum of 6 in DMSO-d_6.

Figure. S23. ESI-HRMS of 6 in MeOH.

Figure. S24. The 1H-1H COSY NMR spectrum of 6 (500 MHz in DMSO-d_6 at 298K).
Figure. S25. The 1H NMR spectrum of 8 in CDCl$_3$.

Figure. S26. The 13C NMR spectrum of 8 in CDCl$_3$.

Figure. S27. ESI-HRMS of 8 in MeOH.
Figure. S28. The 1H NMR spectrum of 9 in DMSO-d_6.

Figure. S29. The 13C NMR spectrum of 9 in DMSO-d_6.

Figure. S30. ESI-HRMS of 9 in MeOH.
Figure. S31. Job’s plot for determining the stoichiometry of 9 and Zn$^{2+}$ in DMF.

Figure. S32. Plot of F$_{622\text{nm}}$ vs. [Zn$^{2+}$] for 9 in DMF. $\lambda_{ex} = 538$ nm. The best fit line to the equation, superimposed on the data, yields K_{ass} of 1.08×10^7 M$^{-1}$.
Figure. S33. Calibration curve of probe 9 in DMF, with the fluorescence intensity at 622 nm plotted vs Zn$^{2+}$ concentration. The inset shows the linear responses at low Zn$^{2+}$ concentrations. λ_{ex} was fixed at 538 nm. The detection limit was found to be 1.1\times10$^{-8}$ M.

Figure. S34. a) Absorbance changes during the titration of 9 (10 μM) with Zn$^{2+}$ in the HEPES buffer (DMF/50mM HEPES, 4:1, v:v, pH 7.2). b) Fluorescence changes during the titration of 9 (10 μM) with Zn$^{2+}$ in the HEPES buffer. Excitation wavelength was fixed at 545 nm (one of the isosbestic points).