Synthesis and photophysical properties of 2′-deoxyguanosine derivatives labeled with fluorene and fluorenone units: Toward excimer probes

Min Ji Kim, a Yujin Seo a and Gil Tae Hwang* a

aDepartment of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 702-701, Korea.
E-mail: giltae@knu.ac.kr; Fax: +82 53 950 6330; Tel.: +82 53 950 5331

Supplementary Information
Fig. S1 Absorption spectra of (a) G^{FL} and (b) G^{FO} in various solvents at 25 °C (all at 3 μM concentration). All samples contained 0.5% DMSO to ensure solubility.

Fig. S2 Emission spectra of (a) G^{FL} in relatively nonpolar solvents, (b) G^{FL} in relatively polar solvents, (c) G^{FO} in relatively nonpolar solvents, and (d) G^{FO} in relatively polar solvents at 25 °C (all at 3 μM concentration). Excitation wavelength: 366 nm. All samples contained 0.5% DMSO to ensure solubility.
Fig. S3 (a) Emission maxima of G^PL, (b) monomer emission maxima of G^PO, and (c) excimer emission maxima of G^PO, plotted with respect to values of $E_t(30)$ of various solvents.
Fig. S4 Fluorescence Job’s plots for the interactions of G^{FO} with (a) cytosine (measured at 537 nm) and (b) guanine (measured at 540 nm) in 1,4-dioxane.

Fig. S5 Fluorescence spectra of G^{FO} (3 μM) in 1,4-dioxane containing various concentrations (0–30 μM) of (a) thymine and (b) adenine ($\lambda_{ex} = 345$ nm).
Fig. S6 Linear regression curves of GFOI obtained using the (a) monomer emission band and (b) excimer emission band, obtained by plotting $I_0/(I - I_0)$ with respect to the reciprocal of the nucleobase concentration ($1/[M]$) in 1,4-dioxane ($\lambda_{ex} = 345$ nm). Nucleobase: (a) cytosine; (b) guanine.
Fig. S7 1H NMR spectra of 2a.

Fig. S8 13C NMR spectra of 2a.
Fig. S9 1H NMR spectra of 2b.

Fig. S10 13C NMR spectra of 2b.
Fig. S11 1H NMR spectra of 3a.

Fig. S12 13C NMR spectra of 3a.
Fig. S13 1H NMR spectra of 3b.

Fig. S14 13C NMR spectra of 3b.