Supporting Information

Aqueous Zinc Ammine Complex For Solution-processed ZnO Semiconductors in Thin Film Transistors

Si Yun Park\(^{a\dagger}\), Sunyoung Kim\(^{a\dagger}\), Jeeyoung Yoo\(^a\), Keon-Hee Lim\(^a\), Eungkyu Lee\(^a\), Kyongjun Kim\(^a\), Joohee Kim\(^a\), and Youn Sang Kim\(^{a,b*}\)

\(^a\)Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744, Republic of Korea. Tel: +82-31-888-9143; E-mail: younskim@snu.ac.kr.

\(^b\)Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270, Republic of Korea.

\(^\dagger\) Equally contributed to this work

Experimental Section

Precipitated Zn(OH)\(_2\). The synthesis of zinc ammine complex using precipitated Zn(OH)\(_2\) is as follows; Zn(NO\(_3\))\(_2\)·6H\(_2\)O (Sigma Aldrich, 98%) in distilled H\(_2\)O to a total concentration of 0.5 M Zn. Ten milliliters of 2.5 M NaOH (Duksan Pure Chemicals, 95%) was added dropwise to the zinc nitrate solution while stirring at 500 rpm for 5 min. To minimize residual Na\(^+\) and NO\(_3^-\), the precipitated zinc hydroxide was centrifuged four times with DI water. Following final centrifugation, the supernatant was removed and dried at vacuum oven at 50 °C to get the Zn(OH)\(_2\) powder from synthesis.
Fabrication and observation of TFTs. All prepared solutions were filtered through a hydrophilic 0.45 μm PTFE syringe filter and spin-coated with 3000 rpm for 30 s on SiO$_2$/Si substrates for TFTs fabrication. A thermally grown 200 nm SiO$_2$ (capacitance ~17 nF/cm2) and heavily doped Si substrate were used as a gate insulator and gate electrode, respectively. After deposition, the ZnO film was annealed immediately on preheated hot plate at 300 °C for 1 h. The 100 nm of Al source and drain electrodes are thermally evaporated with mask (Width/Length = 1000 μm / 50 μm). The current-voltage measurements were executed under dark ambient conditions (Agilent 4155B) and the surface morphologies were characterized by an Atomic Force Microscope (AFM; XE100: PSIA). HRTEM (JEM-2100F) was used for the investigation of the ZnO crystal structure. To observe the chemical composition in the ZnO semiconductor films, XPS (SIGMA PROBE: ThermoVG) and H-NMR (600MHz, VNS, VARIAN).
Figure S1. Photographs of zinc ammine complexes of different zinc oxide sources. When the as-prepared solution was refrigerated for 1 day, the zinc ammine complex (90 mM) in 10ml ammonia water was dissolved well. (a) device 1 (ZnO powder), (b) device 2 (intrinsic Zn(OH)$_2$), (c) device 3 (precipitated Zn(OH)$_2$).
Figure S2. 1H-NMR spectra of zinc ammine complex with various zinc oxide sources. The 1H NMR data were obtained in ppm (δ) from the internal standard and chemical shift. (a) ZnO powder, (b) intrinsic Zn(OH)$_2$, (c) precipitated Zn(OH)$_2$.
Figure S3. Output characteristic of various ZnO TFTs. (a) device 1 (ZnO powder), (b) device 2 (intrinsic Zn(OH)$_2$), (c) device 3 (precipitated Zn(OH)$_2$).
Figure S4. The histogram of field effect mobility of various ZnO TFTs as one run at 300 °C.

We fabricated 4 samples of each device. One sample had 15 TFTs (60 TFTs). 75 % of ZnO TFTs (45 TFTs) worked normally.
Figure S5. The hysteresis behavior of various ZnO TFTs with SiO_2 gate dielectric. (a) device 1 (ZnO powder), (b) device 2 (intrinsic Zn(OH)_2), (c) device 3 (precipitated Zn(OH)_2).
Figure S6. (a), (b) and (c) Evolution of the linear transfer curves of various ZnO TFTs, as a function of negative bias stress time (40 V, 0-6000 s), (d) Relative threshold voltage shift (ΔV_{th}) of various ZnO TFTs as a function of stress time.
Figure S7. Images of FFT-SAED patterns of various ZnO films made from zinc ammine complex prepared with various zinc oxide sources (ZnO powder, intrinsic Zn(OH)$_2$ and precipitated Zn(OH)$_2$) by HR-TEM. (a) ZnO powder, (b) intrinsic Zn(OH)$_2$, (c) precipitated Zn(OH)$_2$.