Supplementary Data

CHEMOSELECTIVE FLOW HYDROGENATION APPROACHES TO HIGHLY DECORATED 7-OXA-BICYCLIO[2.2.1]HEPTANES

Lacey Hizartzidis,^a Mark Tarleton, ^a Christopher P. Gordon^a and Adam McCluskey^{a,*}

^aChemistry, Centre for Chemical Biology, The University of Newcastle, University Drive, Callaghan, NSW 2308 Australia.

* Corresponding author. Tel: +61 249 216486; Fax: +61 249 215472.

E-mail address: Adam.McCluskey@newcastle.edu.au

Supporting Information

1.	GC-MS Traces	ii
2.	NMR Spectra	xi

1. GCMS Data

Gas chromatography-mass spectrometry (GC-MS) was performed using a Schimadzu

GC-MS QF2010 EI/NCI System fitted with a ZB-5MS column [30 m x 0.25 mm], 5% phenylarylene stationary phase. The injector temperature was set at 250 °C and an oven program starting at 160 °C, with a hold time of 1 min. The temperature was then rapidly increased to 230 °C (35 °C/min) and it was held for 18.5 - 22 min. The flow rate was set at 23mL/min, with a column flow rate of 0.95 mL/min.

Table i: Details of compounds including molecular weight and retention times observed in GC-MS traces (Fig 1-32).

Compound	<u>Structure</u>	Retention Time (mins)
22a	Chemical Formula: C ₁₆ H ₁₄ N ₂ O ₃ Molecular Weight: 282.29	15.46
23a	Chemical Formula: C ₁₆ H ₂₀ N ₂ O ₃ Molecular Weight: 288.34	13.19
25a	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	10.09
28a	$\begin{array}{c} O \\ Chemical Formula: C_{16}H_{20}N_2O_3 \\ Molecular Weight: 288.34 \end{array}$	13.28

P. Entry 16, Table 2

Q. Entry 17, Table 2

Table 3. Optimisation of the reduction of 22a to 25a. Reactions were conducted at flow rates of 1.33 – 8 mL.min⁻¹, 25 °C, 10

bar ${}^{\rm H}_2$ and analysed using GC-MS.

A. Entry 1, Table 3

C. Entry 3, Table 3

D. Entry 4, Table 3

Table S5: Details of compounds including molecular weight and retention times observed in GC-MS traces.

<u>Compound</u>	<u>Structure</u>	Retention Time (mins)
31	Chemical Formula: C ₁₆ H ₁₅ N ₃ O ₂ Molecular Weight 281.31	19.08
33	$\begin{array}{c} H\\ $	14.11

<u>Compound</u>	<u>Structure</u>	<u>Retention Time (mins)</u>
32	Chemical Formula: C ₁₆ H ₁₄ N ₂ O ₂ S Molecular Weight: 298.36	8.19
34	Chemical Formula: C ₁₆ H ₁₆ N ₂ O ₂ S Molecular Weight 300.38	16.11

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

100 f1 (ppm) . 200 . 190 180 . 170 160 150 140 130 120 . 110 90 80 , 70 , 60 . 50 . 40 30 20 10 . 0

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2014

