Electronic Supplementary Information

Selective dual-side functionalization of hollow SiO$_2$ micropillar arrays for biotechnological applications

María Alba, Elisabetta Romano, Pilar Formentín, Pinkie J. Eravuchira, Josep Ferré-Borrull, Josep Pallarès, Lluís F. Marsal*

Departament Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda Països Catalans 26, 43007 Tarragona (Spain).

*Address correspondence to lluis.marsal@urv.cat
Fig. S1. Cross-view SEM micrograph of a 150 μm-thick macroporous silicon. Zoomed images at different depths display uniform pores in diameter and smooth wall surfaces. Scale bar: 10 μm.
Fig. S2. Dark-field TEM images of A) a single broken micropillar showing a uniform SiO$_2$ wall and a hollow structure; B) a detail of the micropillar tip
Fig. S3. Schematic representation of the GTA reaction onto APTES. A) Partial dehydration of the primary amine into a secondary amine; B) complete dehydration of the secondary amine into an imine group.
Fig. S4. Second derivative FT-IR spectra of a nanoporous sample after functionalization with APTES (green line) and subsequent GTA docking (pink line). The minimum at 1506 cm\(^{-1}\) falls in the region of the secondary amine secondary amine δNH (1490-1580 cm\(^{-1}\)), whereas the minimum at 1656 cm\(^{-1}\) is in the region of νN=C(1660-1675 cm\(^{-1}\)). Assuming these assignments are correct, this implies there is equilibrium in the GTA docking on APTES between the partially and completely dehydrated forms.
Fig. S5. FT-IR spectra of a nanoporous sample freshly etched (H-terminated, blue line), after oxidation (OH-terminated, black line) and after MPTMS functionalization (SH-terminated, orange line).
Fig. S6. FT-IR spectra of a nanoporous sample freshly etched (H-terminated, blue line), after oxidation (OH-terminated, black line) and after MPMS functionalization (NH$_2$-terminated, pink line).