Stereoselective Synthesis of α-(Dichloromethyl)amines, α-(Chloromethyl)amines, and α-Chloroaziridines

Desheng Li, Ya Li*, Zhiqiu Chen, Huaqi Shang, Hongsen Li, Xinfeng Ren

Department of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China

E-mail: ya.li@sues.edu.cn

Contents

General procedures..S2
Determination of the configuration of compound 5c ..S3
1H NMR Spectra of the crude products 3..S5
1H NMR Spectra of the crude products 5..S11
1H NMR of the crude product 3a via radical mono-dechlorination..S14
LC-MS spectra of the crude products 3..S15
NMR Spectra for all new products..S23
General Procedures.

All commercial reagents and solvents were used directly as purchased without further purification. THF was distilled from sodium/benzophenone. N,N-Dimethylformamide was distilled from CaH₂. Flash chromatography was performed on silica gel with petroleum ether (PE)/EtOAc as the eluent. Melting points were uncorrected. Optical rotations were measured with a sodium lamp. ¹H NMR spectra were recorded at 400 MHz. Decoupled ¹³C NMR spectra were recorded at 100 MHz at the given temperatures. Chemical shifts (δ) are reported in parts per million and referenced to the residual solvent peak, and J values are given in hertz (Hz).
Determination of the configuration of compound 5c
Packing view of compound 5c

The Cl···O distance is 3.183Å
1H NMR Spectra of the crude products 3

1H NMR of crude product 3a

1H NMR of crude product 3b
1H NMR of crude product 3c

1H NMR of crude product 3d
1H NMR of crude product 3e

1H NMR of crude product 3f
1H NMR of crude product 3g

1H NMR of crude product 3h
1H NMR of crude product 3i

1H NMR of crude product 3j
1H NMR of crude product 3k
1H NMR Spectra of the crude products 5

1H NMR of crude product 5a

1H NMR of crude product 5b
1H NMR of crude product 5c

1H NMR of crude product 5d
1H NMR of crude product 5e

1H NMR of crude product 5f
\(^1\)H NMR of crude product 3a via radical mono-dechlorination of compound 6a
LC-MS spectra of the crude products 3

3a, rt = 9.38 min; the other diastereomer, rt = 9.10 min
dr = 59.7 : 0.9 = 98 : 2

1a) HPLC spectroscopy

1b) Total ion current chromatogram

1c) Selected ion
3c, rt = 9.27 min; the other diastereomer, rt = 8.91 min

\[\text{dr} = 98.8 : 1.11 = 98 : 2 \]

1a) HPLC spectroscopy

1b) Total ion current chromatogram

1c) Selected ion
3d, $rt = 6.00$ min; the other diastereomer, $rt = 5.67$ min

$dr = 9591 : 212 = 98 : 2$
3e, rt = 7.27 min; the other diastereomer, rt = 7.02 min

dr = 98.06 : 1.06 = 98 : 2

1a) HPLC spectroscopy

1b) Total ion current chromatogram

1c) Selected ion
3f, rt = 7.60 min; the other diastereomer, rt = 7.87 min

\[\text{dr} = 61 : 59.8 = 98 : 2 \]
3g, rt = 8.07 min; the other diastereomer, rt = 7.19 min

dr = 5766 : 74 = 98 : 2
3h, $rt = 10.85$ min; the other diastereomer, $rt = 10.44$ min
$dr = 24.8 : 0.29 = 98 : 2$

1a) HPLC spectroscopy

1b) Total ion current chromatogram

1c) Selected ion
3i, rt = 8.59 min; the other diastereomer, rt = 8.07 min
dr = 28231 : 571 = 98 : 2
NMR Spectra for all new products

3a, 1H NMR (CDCl$_3$)
13C NMR (CDCl$_3$)
^{1}H NMR (CDCl$_3$)
$3g, ^{13}C$ NMR (CDCl$_3$)
$\text{H} \cdot \text{N} \cdot \text{S} \cdot \text{O}$

$\text{C} \cdot \text{H} \cdot \text{Cl}_2$

$\text{H} \cdot \text{N}$

$\text{H} \cdot \text{N} \cdot \text{MR} \cdot (\text{CDCl}_3)$

f (ppm)
3j, 13C NMR (CDCl$_3$)
3k, 13C NMR (CDCl$_3$)
3m. 1H NMR (CDCl$_3$)
13C NMR (CDCl$_3$)
3n, 1H NMR (CDCl$_3$)
51
13C NMR (CDCl$_3$)

5a.
5b, 1H NMR (CDCl$_3$)

The NMR spectrum shows resonances corresponding to the chemical shifts provided.

- 9.0 ppm
- 8.5 ppm
- 8.0 ppm
- 7.5 ppm
- 7.0 ppm
- 6.5 ppm
- 6.0 ppm
- 5.5 ppm
- 5.0 ppm
- 4.5 ppm
- 4.0 ppm
- 3.5 ppm
- 3.0 ppm
- 2.5 ppm
- 2.0 ppm
- 1.5 ppm
- 1.0 ppm
- 0.5 ppm
$\text{5b, }^{13}\text{C NMR (CDCl}_3\text{)}$

![NMR spectrum image]

286 ppm

215.8

129.4

129.4

14.0

12.9

22.4
5d. 1H NMR (CDCl$_3$)
$5e, 1H$ NMR (CDCl$_3$)
5h. ^1^H NMR (CDCl$_3$)
7b. 1H NMR (CDCl$_3$)
^{13}C NMR (CDCl$_3$)
7c. ^1H NMR (CDCl₃)
7c, 13C NMR (CDCl$_3$)
7e. 13C NMR (CDCl$_3$)
7f, 13C NMR (CDCl$_3$)