A high sensitive fluorescence turn-on probe for imaging Zn$^{2+}$ in aqueous solution and living cells

Ting-Ting Zhanga,†, Xin-Peng Chenb,†, Jin-Ting Liua,*, Liang-Zhong Zhanga, Jia-Ming Chua, Le Sub,*, Bao-Xiang Zhaoa,*

a Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China

b School of life, Shandong University, Jinan 250100, P.R. China

Fig. S1 UV-vis spectral changes of compound L (5×10$^{-5}$ M) in the HEPES buffer solution (pH = 7.2, 50% CH$_3$CH$_2$OH, v/v) upon additions of various metal ions (25×10$^{-5}$ M).
Fig. S2 UV-vis spectrum of L in HEPES buffer solution (20 mM HEPES, pH 7.2, EtOH : H$_2$O = 1 : 1) with different concentration

Fig. S3 Linear relation of the absorbance and L concentration at 355 nm. $R^2 = 0.999$
Fig. S4 The ratio of absorbance (354 nm/410 nm) of \(L \) (50 \(\mu \)M) as a function of \(\text{Zn}^{2+} \) concentration. The inset shows the ratio of absorbance at 354 nm and 410 nm (\(A_{354}/A_{410} \)). \(R^2 = 0.960 \).

Fig. S5 Linear regression equation of \(L \) (10 \(\mu \)M) upon addition of \(\text{Zn}^{2+} \) (0.1–1.0 equiv.) in EtOH/HEPES (1:1, v/v, pH 7.2). \(R^2 = 0.995 \).

\(\sigma_{\text{bi}} = 4.67; \quad m = 1.14 \times 10^8; \quad \text{LOD} = 3\sigma_{\text{bi}}/m = 1.23 \times 10^{-7} \text{ M} \)
Fig. S6 Benesi–Hildebrand plot of L (10 μM) in EtOH/HEPES (1:1, v/v, pH 7.2) buffered solution in the presence of Zn$^{2+}$ (0.1–50 equiv.). $R^2 = 0.999$.

Fig. S7 Fluorescence emission spectra of L-Zn$^{2+}$ (1.0×10$^{-5}$ M) in the presence of Al$^{3+}$, Cr$^{3+}$, Fe$^{3+}$, Co$^{2+}$, Cu$^{2+}$, Ba$^{2+}$, Pb$^{2+}$, Na$^+$, Mg$^{2+}$, K$^+$ and Ca$^{2+}$ (50×10$^{-5}$ M) in the HEPES buffer solution (20 mM HEPES, pH = 7.2, EtOH : H$_2$O = 1 : 1). (Excitation wavelength: 410 nm).
Fig. S8 Fluorescence emission spectra of free probe L (10 μM) in buffered EtOH/HEPES (20 mM, pH = 7.2, 1:1, v/v) upon addition of 5 equiv. of different zinc salts.

Fig. S9 Job’s plot evaluated from the fluorescence spectra of L and Zn$^{2+}$ at 410 nm in buffered EtOH/HEPES (1/1, v/v, pH 7.2) solution (the total concentration of L and Zn$^{2+}$ is 1.0×10^{-5} M).

Fig. S10 Proposed complex structure of L with Zn$^{2+}$.
Fig. S11 Fluorescence spectra of compound 6 (1.0×10⁻⁵ M) in the absence and presence of 5 equiv. of Zn²⁺ in the HEPES buffer solution (20 mM HEPES, pH = 7.2, EtOH : H₂O = 1 : 1). (Excitation wavelength: 410 nm).

Fig. S12 HRMS spectra of L-Zn²⁺ complex.

Fig. S13 Optimized structure of L-Zn²⁺ by DFT calculation.
Fig. S14 1H NMR spectra of L with 0, 5.0 equiv. Zn$^{2+}$ in d-CH$_3$CN. (a) Free probe L. (b) [Zn$^{2+}$]/[L] equals 5 : 1.

Fig. S15 Reversibility of L-Zn$^{2+}$ binding (Slit: 10 nm/5 nm).
Fig. S16 Effect of pH on the fluorescence intensity ($\lambda_{ex} = 410$ nm, $\lambda_{em} = 472$ nm) of L (10 μM) in EtOH/HEPES (1/1, v/v, pH = 7.2) buffered solution measured with and without Zn$^{2+}$ (5 equiv.).

Fig. S17 Time course of the response of L (10 μM) in the presence of Zn$^{2+}$ (5 equiv.) in EtOH/HEPES (1/1, v/v, pH = 7.2) buffered solution. Excitation wavelength was 410 nm.
Fig. S18 SRB assay in HeLa cells with probe concentration of 5 μM at 6 h.

Fig. S19 1H NMR of 1-(3-hydroxynaphthalen-2-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (L)
Fig. S20 13C NMR of 1-(3-hydroxynaphthalen-2-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (L)

Fig. S21 HRMS of 1-(3-hydroxynaphthalen-2-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (L)