Electronic Supplementary Information for

New Rearranged Limonoids from *Walsura cochinchinensis*

Mei-Ling Han, Yu Shen, Ying Leng, Hua Zhang* and Jian-Min Yue*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, P. R. China

Table S1. X-ray crystallographic data for walsucochinoid C (1)
Table S2. X-ray crystallographic data for walsucochinoid L (10)

Figure S1. 1H NMR spectrum of walsucochinoid C (1) in CDCl$_3$
Figure S2. 13C NMR spectrum of walsucochinoid C (1) in CDCl$_3$
Figure S3. HSQC spectrum of walsucochinoid C (1) in CDCl$_3$
Figure S4. HMBC spectrum of walsucochinoid C (1) in CDCl$_3$
Figure S5. NOESY spectrum of walsucochinoid C (1) in CDCl$_3$
Figure S6. ESI(+)MS spectrum of walsucochinoid C (1)
Figure S7. ESI(−)MS spectrum of walsucochinoid C (1)
Figure S8. HRESI(−)MS spectrum of walsucochinoid C (1)
Figure S9. IR spectrum of walsucochinoid C (1)

Figure S10. 1H NMR spectrum of walsucochinoid D (2) in CDCl$_3$
Figure S11. 13C NMR spectrum of walsucochinoid D (2) in CDCl$_3$
Figure S12. HMBC spectrum of walsucochinoid D (2) in CDCl$_3$
Figure S13. ROESY spectrum of walsucochinoid D (2) in CDCl$_3$
Figure S14. ESI(+)MS spectrum of walsucochinoid D (2)
Figure S15. HRESI(+)MS spectrum of walsucochinoid D (2)
Figure S16. IR spectrum of walsucochinoid D (2)

Figure S17. 1H NMR spectrum of walsucochinoid E (3) in CDCl$_3$
Figure S18. 13C NMR spectrum of walsucochinoid E (3) in CDCl$_3$
Figure S19. HMBC spectrum of walsucochinoid E (3) in CDCl$_3$
Figure S20. ROESY spectrum of walsucochinoid E (3) in CDCl$_3$
Figure S21. ESI(+)MS spectrum of walsucochinoid E (3)
Figure S22. HRESI(+)MS spectrum of walsucochinoid E (3)
Figure S23. IR spectrum of walsucochinoid E (3)

Figure S24. 1H NMR spectrum of walsucochinoid F (4) in CDCl$_3$
Figure S25. 13C NMR spectrum of walsucochinoid F (4) in CDCl$_3$

* Tel.: +86-21-50806718; Email: h.zhang@simm.ac.cn, jmyue@mail.shcnc.ac.cn
Figure S26. ROESY spectrum of walsucochinoid F (4) in CDCl₃
Figure S27. ESI(+)MS spectrum of walsucochinoid F (4)
Figure S28. ESI(−)MS spectrum of walsucochinoid F (4)
Figure S29. HRESI(−)MS spectrum of walsucochinoid F (4)
Figure S30. IR spectrum of walsucochinoid F (4)

Figure S31. ¹H NMR spectrum of walsucochinoid G (5) in CDCl₃
Figure S32. ¹³C NMR spectrum of walsucochinoid G (5) in CDCl₃
Figure S33. HSQC spectrum of walsucochinoid G (5) in CDCl₃
Figure S34. HMBC spectrum of walsucochinoid G (5) in CDCl₃
Figure S35. ROESY spectrum of walsucochinoid G (5) in CDCl₃
Figure S36. ESI(+)MS spectrum of walsucochinoid G (5) in CDCl₃
Figure S37. ESI(−)MS spectrum of walsucochinoid G (5) in CDCl₃
Figure S38. HRESI(−)MS spectrum of walsucochinoid G (5) in CDCl₃
Figure S39. IR spectrum of walsucochinoid G (5)

Figure S40. ¹H NMR spectrum of walsucochinoid H (6) in CDCl₃
Figure S41. ¹³C NMR spectrum of walsucochinoid H (6) in CDCl₃
Figure S42. HSQC spectrum of walsucochinoid H (6) in CDCl₃
Figure S43. HMBC spectrum of walsucochinoid H (6) in CDCl₃
Figure S44. NOESY spectrum of walsucochinoid H (6) in CDCl₃
Figure S45. ESI(+)MS spectrum of walsucochinoid H (6)
Figure S46. ESI(−)MS spectrum of walsucochinoid H (6)
Figure S47. HRESI(−)MS spectrum of walsucochinoid H (6)
Figure S48. IR spectrum of walsucochinoid H (6)

Figure S49. ¹H NMR spectrum of walsucochinoid I (7) in CDCl₃
Figure S50. ¹³C NMR spectrum of walsucochinoid I (7) in CDCl₃
Figure S51. HSQC spectrum of walsucochinoid I (7) in CDCl₃
Figure S52. HMBC spectrum of walsucochinoid I (7) in CDCl₃
Figure S53. ROESY spectrum of walsucochinoid I (7) in CDCl₃
Figure S54. ESI(+)MS spectrum of walsucochinoid I (7)
Figure S55. ESI(−)MS spectrum of walsucochinoid I (7)
Figure S56. HRESI(−)MS spectrum of walsucochinoid I (7)
Figure S57. IR spectrum of walsucochinoid I (7)

Figure S58. ¹H NMR spectrum of walsucochinoid J (8) in CDCl₃
Figure S59. ¹³C NMR spectrum of walsucochinoid J (8) in CDCl₃
Figure S60. HSQC spectrum of walsucochinoid J (8) in CDCl₃
Figure S61. HMBC spectrum of walsucochinoid J (8) in CDCl₃
Figure S62. ROESY spectrum of walsucochinoid J (8) in CDCl₃
Figure S63. ESI(+)MS spectrum of walsucochinoid J (8)
Figure S64. ESI(−)MS spectrum of walsucochinoid J (8)
Figure S65. HRESI(−)MS spectrum of walsucochinoid J (8)
Figure S66. IR spectrum of walsucochinoid J (8)

Figure S67. 1H NMR spectrum of walsucochinoid K (9) in CDCl$_3$
Figure S68. 13C NMR spectrum of walsucochinoid K (9) in CDCl$_3$
Figure S69. HSQC spectrum of walsucochinoid K (9) in CDCl$_3$
Figure S70. HMBC spectrum of walsucochinoid K (9) in CDCl$_3$
Figure S71. ROESY spectrum of walsucochinoid K (9)
Figure S72. ESI(+)MS spectrum of walsucochinoid K (9)
Figure S73. ESI(−)MS spectrum of walsucochinoid K (9)
Figure S74. HRESI(−)MS spectrum of walsucochinoid K (9)
Figure S75. IR spectrum of walsucochinoid K (9)

Figure S76. 1H NMR spectrum of walsucochinoid L (10) in CDCl$_3$
Figure S77. 13C NMR spectrum of walsucochinoid L (10) in CDCl$_3$
Figure S78. HSQC spectrum of walsucochinoid L (10) in CDCl$_3$
Figure S79. HMBC spectrum of walsucochinoid L (10) in CDCl$_3$
Figure S80. ROESY spectrum of walsucochinoid L (10) in CDCl$_3$
Figure S81. ESI(+)MS spectrum of walsucochinoid L (10)
Figure S82. ESI(−)MS spectrum of walsucochinoid L (10)
Figure S83. HRESI(−)MS spectrum of walsucochinoid L (10)
Figure S84. IR spectrum of walsucochinoid L (10)

Figure S85. 1H NMR spectrum of walsucochinoid M (11) in CDCl$_3$
Figure S86. 13C NMR spectrum of walsucochinoid M (11) in CDCl$_3$
Figure S87. HSQC spectrum of walsucochinoid M (11) in CDCl$_3$
Figure S88. HMBC spectrum of walsucochinoid M (11) in CDCl$_3$
Figure S89. ROESY spectrum of walsucochinoid M (11) in CDCl$_3$
Figure S90. ESI(+)MS spectrum of walsucochinoid M (11)
Figure S91. HRESI(+)MS spectrum of walsucochinoid M (11)
Figure S92. IR spectrum of walsucochinoid M (11)

Figure S93. 1H NMR spectrum of walsucochinoid N (12) in CDCl$_3$
Figure S94. 13C NMR spectrum of walsucochinoid N (12) in CDCl$_3$
Figure S95. HSQC spectrum of walsucochinoid N (12) in CDCl$_3$
Figure S96. HMBC spectrum of walsucochinoid N (12) in CDCl$_3$
Figure S97. ROESY spectrum of walsucochinoid N (12) in CDCl$_3$
Figure S98. ESI(+)MS spectrum of walsucochinoid N (12)
Figure S99. HRESI(+)MS spectrum of walsucochinoid N (12)
Figure S100. IR spectrum of walsucochinoid N (12)

Figure S101. 1H NMR spectrum of walsucochinoid O (13) in CDCl$_3$
Figure S102. 13C NMR spectrum of walsucochinoid O (13) in CDCl$_3$
Figure S103. HSQC spectrum of walsucochinoid O (13) in CDCl$_3$
Figure S104. HMBC spectrum of walsucochinoid O (13) in CDCl$_3$
Figure S105. ROESY spectrum of walsucochinoid O (13) in CDCl₃
Figure S106. ESI(+)MS spectrum of walsucochinoid O (13)
Figure S107. ESI(−)MS spectrum of walsucochinoid O (13)
Figure S108. HRESI(+)MS spectrum of walsucochinoid O (13)
Figure S109. IR spectrum of walsucochinoid O (13)

Figure S110. ¹H NMR spectrum of walsucochinoid P (14) in CDCl₃
Figure S111. ¹³C NMR spectrum of walsucochinoid P (14) in CDCl₃
Figure S112. HSQC spectrum of walsucochinoid P (14) in CDCl₃
Figure S113. ROESY spectrum of walsucochinoid P (14) in CDCl₃
Figure S114. ESI(+)MS spectrum of walsucochinoid P (14)
Figure S115. ESI(−)MS spectrum of walsucochinoid P (14)
Figure S116. HRESI(+)MS spectrum of walsucochinoid P (14)
Figure S117. IR spectrum of walsucochinoid P (14)

Figure S118. ¹H NMR spectrum of walsucochinoid Q (15) in CDCl₃
Figure S119. ¹³C NMR spectrum of walsucochinoid Q (15) in CDCl₃
Figure S120. HSQC spectrum of walsucochinoid Q (15) in CDCl₃
Figure S121. HMBC spectrum of walsucochinoid Q (15) in CDCl₃
Figure S122. ROESY spectrum of walsucochinoid Q (15) in CDCl₃
Figure S123. ESI(+)MS spectrum of walsucochinoid Q (15)
Figure S124. ESI(−)MS spectrum of walsucochinoid Q (15)
Figure S125. HRESI(+)MS spectrum of walsucochinoid Q (15)
Figure S126. IR spectrum of walsucochinoid Q (15)

Figure S127. ¹H NMR spectrum of walsucochinoid R (16) in CDCl₃
Figure S128. ¹³C NMR spectrum of walsucochinoid R (16) in CDCl₃
Figure S129. HSQC spectrum of walsucochinoid R (16) in CDCl₃
Figure S130. HMBC spectrum of walsucochinoid R (16) in CDCl₃
Figure S131. ROESY spectrum of walsucochinoid R (16) in CDCl₃
Figure S132. ESI(+)MS spectrum of walsucochinoid R (16)
Figure S133. HRESI(+)MS spectrum of walsucochinoid R (16)
Figure S134. IR spectrum of walsucochinoid R (16)
Table S1. X-ray crystallographic data for walsucochinoid C (1).a

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{27}H_{32}O_{4}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>420.53</td>
</tr>
<tr>
<td>Temperature</td>
<td>133(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.54178 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)2(1)2(1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 5.96350 (10) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 13.7471 (3) Å, β = 90°</td>
</tr>
<tr>
<td></td>
<td>c = 28.1129 (6) Å, γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>2304.72(8) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Calculated density</td>
<td>1.212 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.636 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>904</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.499 × 0.226 × 0.152 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.14 to 64.98°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-6<=h<=6, -16<=k<=16, -32<=l<=33</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>17561</td>
</tr>
<tr>
<td>Independent collections</td>
<td>3887 [R(int) = 0.0362]</td>
</tr>
<tr>
<td>Completeness to theta = 66.32°</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.7535 and 0.5818</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3887 / 0 / 287</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.086</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>R1 = 0.0419, wR2 = 0.1162</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0420, wR2 = 0.1163</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.0(2)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.416 and -0.424 e. Å⁻³</td>
</tr>
</tbody>
</table>

*a I was crystallized from MeOH/H₂O (50:1)
Table S2. X-ray crystallographic data for walsucochinoid L (10).a

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{27}H_{36}O_{4}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>424.56</td>
</tr>
<tr>
<td>Temperature</td>
<td>133(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.54178 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)2(1)2(1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>(a = 8.2016 (5)) Å, (\alpha = 90^\circ)</td>
<td></td>
</tr>
<tr>
<td>(b = 10.1084 (6)) Å, (\beta = 90^\circ)</td>
<td></td>
</tr>
<tr>
<td>(c = 13.3847 (8)) Å, (\gamma = 90^\circ)</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>1109.36(12) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Calculated density</td>
<td>1.271 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.661 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>460</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.15 × 0.12 × 0.10 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.30 to 64.98°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-8≤h≤9, -11≤k≤11, -15≤l≤15</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>6271</td>
</tr>
<tr>
<td>Independent collections</td>
<td>3273 [R(int) = 0.0622]</td>
</tr>
<tr>
<td>Completeness to theta = 66.32°</td>
<td>94.4 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9368 and 0.9073</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3273 / 1 / 289</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.069</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>R1 = 0.0704, wR2 = 0.1858</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0725, wR2 = 0.1884</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.0(4)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.395 and −0.319 e. Å⁻³</td>
</tr>
</tbody>
</table>

a 10 was crystallized from MeOH/H₂O (100:1)
Figure S1. 1H NMR spectrum of walsucochinoid C (1) in CDCl$_3$
Figure S2. 13C NMR spectrum of walsucochinoid C (1) in CDCl$_3$
Figure S3. HSQC spectrum of walsucochinoid C (1) in CDCl₃
Figure S4. HMBC spectrum of walsucochinoid C (1) in CDCl₃
Figure S5. NOESY spectrum of walsucochinoid C (1) in CDCl$_3$
Figure S6. ESI(+)MS spectrum of walsucochinoid C (1)
Figure S7. ESI(−)MS spectrum of walsucochinoid C (1)
Figure S8. HRESI(−)MS spectrum of walsucochinoid C (1)
Figure S9. IR spectrum of walsucochinoid C (1)
Figure S10. 1H NMR spectrum of walsucochinoid D (2) in CDCl$_3$
Figure S11. 13C NMR spectrum of walsucochinoid D (2) in CDCl$_3$
Figure S12. HMBC spectrum of walsucochinoid D (2) in CDCl$_3$
Figure S13. ROESY spectrum of walsucochinoid D (2) in CDCl$_3$
Figure S14. ESI(+)MS spectrum of walsucochinoid D (2)
Figure S15. HRESI(+)MS spectrum of walsucochinoid D (2)
Figure S16. IR spectrum of walsucochinoid D (2)
Figure S17. 1H NMR spectrum of walsucochinoid E (3) in CDCl$_3$
Figure S18. 13C NMR spectrum of walsucochinoid E (3) in CDCl$_3$
Figure S19. HMBC spectrum of walsucochinoid E (3) in CDCl$_3$
Figure S20. ROESY spectrum of walsucochinoid E (3) in CDCl$_3$
Figure S21. ESI(+)MS spectrum of walsucochinoid E (3)
Figure S22. HRESI(+)MS spectrum of walsucochinoid E (3)

Elemental Composition Report

Single Mass Analysis
Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions
381 formula(s) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass)

Elements Used:
C: 10-70 H: 0-80 O: 0-30 Na: 0-1

WAL-48 LCT PKE KE324
WAL-48_1109 56 (1.216) AM2 (Ar,10000.00,0.00); ABS; Cm (46.05)

09-Nov-2011 16:03:09
1: TOF MS ES+ 2.028+004
947.4720

Minimum: -1.5 Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula
Maximum: -50.0
947.4720 947.4710 1.0 1.1 24.5 42.9 0.0 C58 H68 O10 Na
947.4724 -1.4 -1.5 27.3 46.1 3.2 C60 H67 O10
947.4699 -2.1 -2.2 5.5 53.9 11.1 C42 H75 O23
Figure S23. IR spectrum of walsucochinoid E (3)
Figure S24. 1H NMR spectrum of walsucochinoid F (4) in CDCl$_3$
Figure S25. 13C NMR spectrum of walsucochinoid F (4) in CDCl$_3$
Figure S26. ROESY spectrum of walsucochinoid F (4) in CDCl₃
Figure S27. ESI(+)MS spectrum of walsucochinoid F (4)
Figure S28. ESI(−)MS spectrum of walsucochinoid F (4)
Figure S29. HRESI(−)MS spectrum of walsucochinoid F (4)

Elemental Composition Report

Single Mass Analysis
Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions
116 formula(s) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 10-70 H: 0-80 O: 0-30

WAL-52
LCT PXE KE324

WAL-52_1193_38 (0.742) AM2 (Au:10000.0,0.001,1.00), ABS, Cm (26:46)

09-Nov-2011
15:54:40
1: TOF MS ES-
8.93e+004

Maximum: 1.5
Minimum: 5.0 3.0 50.0

Mass Calc. Mass mDa PPM DBE i-FIT i-FIT (Norm) Formula
493.2229 493.2226 0.3 0.6 13.5 156.3 0.0 C29 H33 O7
Figure S30. IR spectrum of walsucochinoid F (4)
Figure S31. 1H NMR spectrum of walsucochinoid G (5) in CDCl$_3$
Figure S32. 13C NMR spectrum of walsucochinoid G (5) in CDCl$_3$.
Figure S33. HSQC spectrum of walsucochinoid G (5) in CDCl₃
Figure S34. HMBC spectrum of walsucochinoid G (5) in CDCl₃
Figure S35. ROESY spectrum of walsucochinoid G (5) in CDCl₃
Figure S36. ESI(+)MS spectrum of walsucochinoid G (5)
Figure S37. ESI(−)MS spectrum of walsuchoxinoid G (5)
Figure S38. HRESI(−) MS spectrum of walsucochinoid G (5)
Figure S39. IR spectrum of walsucochinoid G (5)
Figure S40. 1H NMR spectrum of walsucochinoid H (6) in CDCl$_3$
Figure S41. 13C NMR spectrum of walsucochinoid H (6) in CDCl$_3$
Figure S42. HSQC spectrum of walsucochinoid H (6) in CDCl₃
Figure S43. HMBC spectrum of walsucochinoid H (6) in CDCl₃
Figure S44. NOESY spectrum of walsucochinoid H (6) in CDCl₃
Figure S45. ESI(+)MS spectrum of walsucochinoid H (6)
Figure S46. ESI(−)MS spectrum of walsucochinoid H (6)
Figure S47. HRESI(−)MS spectrum of walsucochinoid H (6)
Figure S48. IR spectrum of walsucochinoid H (6)
Figure S49. 1H NMR spectrum of walsucochinoid I (7) in CDCl$_3$
Figure S50. 13C NMR spectrum of walsucochinoid I (7) in CDCl$_3$
Figure S51. HSQC spectrum of walsucochinoid I (7) in CDCl$_3$
Figure S52. HMBC spectrum of walsochinoid I (7) in CDCl$_3$
Figure S53. ROESY spectrum of walsucochinoid I (7) in CDCl₃
Figure S54. ESI(+)MS spectrum of walsucochinoid I (7)
Figure S55. ESI(−)MS spectrum of walsucochinoid I (7)
Figure S56. HRESI(−)MS spectrum of walsucochinoid I (7)
Figure S57. IR spectrum of walsucochinoid I (7)
Figure S58. 1H NMR spectrum of walsucochinoid J (8) in CDCl$_3$
Figure S59. 13C NMR spectrum of walsucochinoid J (8) in CDCl$_3$.
Figure S60. HSQC spectrum of walsucochinoid J (8) in CDCl₃
Figure S61. HMBC spectrum of walsucochinoid J (8) in CDCl₃
Figure S62. ROESY spectrum of walsucochinoid J (8) in CDCl₃
Figure S63. ESI(+)MS spectrum of walsuchochinoid J (8)
Figure S64. ESI(−)MS spectrum of walsucochinoid J (8)
Figure S65. HRESI(−)MS spectrum of walsucochinoid J (8)
Figure S66. IR spectrum of walsucochinoid J (8)
Figure S67. 1H NMR spectrum of walsucochinoid K (9) in CDCl$_3$
Figure S68. 13C NMR spectrum of walsucochinoid K (9) in CDCl$_3$
Figure S69. HSQC spectrum of walsucochinoid K (9) in CDCl₃
Figure S70. HMBC spectrum of walsucochinoid K (9) in CDCl₃
Figure S71. ROESY spectrum of walsucochinoid K (9) in CDCl₃
Figure S72. ESI(+)MS spectrum of walsucochinoid K (9)
Figure S73. ESI(−)MS spectrum of walsucochinoid K (9)
Figure S74. HRESI(-)MS spectrum of walsucochinoid K (9)
Figure S75. IR spectrum of walsucochinoid K (9)
Figure S76. 1H NMR spectrum of walsucochinoid L (10) in CDCl$_3$
Figure S77. 13C NMR spectrum of walsucochinoid L (10) in CDCl$_3$
Figure S78. HSQC spectrum of walsucochinoid L (10) in CDCl₃
Figure S79. HMBC spectrum of walsucochinoid L (10) in CDCl$_3$
Figure S80. ROESY spectrum of walsucochinoid L (10) in CDCl₃
Figure S81. ESI(+)MS spectrum of walsucochinoid L (10)
Figure S82. ESI(−)MS spectrum of walsucochinoid L (10)
Figure S83. HRESI(−)MS spectrum of walsucochinoid L (10)

Elemental Composition Report

Single Mass Analysis

Tolerance = 2.0 mDa / DBE: min = -1.5, max = 50.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monolabeled Mass, Even Electron loss

106 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)

Elements Used:

<table>
<thead>
<tr>
<th>C: 10-70</th>
<th>H: 0-80</th>
<th>O: 0-30</th>
</tr>
</thead>
</table>

WAL-35n

LCT PXE KE324

WAL-35n_1104 27 (0.563) AM2 (Ar:10000/0.001.00); ABS; Cm (9.34)

<table>
<thead>
<tr>
<th>m/z</th>
<th>893.5599</th>
<th>894.5272</th>
<th>895.5321</th>
</tr>
</thead>
</table>

| Minimum: | 2.0 | 2.0 | 1.5 |
| Maximum: | 50.0 | 50.0 | 50.0 |

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>469.2599</td>
<td>469.2590</td>
<td>0.9</td>
<td>1.9</td>
<td>10.5</td>
<td>155.3</td>
<td>0.0</td>
<td>C28 H37 O6</td>
</tr>
</tbody>
</table>
Figure S84. IR spectrum of walsucochinoid L (10)
Figure S85. 1H NMR spectrum of walsucochinoid M (11) in CDCl$_3$
Figure S86. 13C NMR spectrum of walsucochinoid M (11) in CDCl$_3$
Figure S87. HSQC spectrum of walsucochinoid M (11) in CDCl₃
Figure S88. HMBC spectrum of walsucochinoid M (11) in CDCl₃
Figure S89. ROESY spectrum of walsucochinoid M (11) in CDCl₃
Figure S90. ESI(+)MS spectrum of walsucochinoid M (11)
Figure S91. HRESI(+)MS spectrum of walsucochinoid M (11)

Elemental Composition Report

Single Mass Analysis
- Tolerance = 2.0 mDa
- DBE: min = -1.5, max = 50.0
- Element prediction: Off
- Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions
- 418 formula(s) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass)

<table>
<thead>
<tr>
<th>Elements Used</th>
<th>C: 10-70</th>
<th>H: 0-80</th>
<th>O: 0-30</th>
<th>Na: 0-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAL-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCT PKE KES24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NanoESI Positive Mass Spectrum
- 04-Nov-2011 15:34:28
- 1 TOF MS ES+
- 2.57e+064

<table>
<thead>
<tr>
<th>m/z</th>
<th>871.5129</th>
<th>872.5165</th>
<th>873.5195</th>
<th>885.5439</th>
<th>874.5010</th>
<th>866.5005</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98.584</td>
<td>98.584</td>
</tr>
<tr>
<td>m/z</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>100</td>
<td>208.0410</td>
<td>294.1639</td>
<td>522.2482</td>
<td>423.2702</td>
<td>561.2832</td>
<td>612.3912</td>
</tr>
<tr>
<td>200</td>
<td>208.0410</td>
<td>294.1639</td>
<td>522.2482</td>
<td>423.2702</td>
<td>561.2832</td>
<td>612.3912</td>
</tr>
<tr>
<td>300</td>
<td>208.0410</td>
<td>294.1639</td>
<td>522.2482</td>
<td>423.2702</td>
<td>561.2832</td>
<td>612.3912</td>
</tr>
<tr>
<td>400</td>
<td>208.0410</td>
<td>294.1639</td>
<td>522.2482</td>
<td>423.2702</td>
<td>561.2832</td>
<td>612.3912</td>
</tr>
<tr>
<td>500</td>
<td>208.0410</td>
<td>294.1639</td>
<td>522.2482</td>
<td>423.2702</td>
<td>561.2832</td>
<td>612.3912</td>
</tr>
<tr>
<td>600</td>
<td>208.0410</td>
<td>294.1639</td>
<td>522.2482</td>
<td>423.2702</td>
<td>561.2832</td>
<td>612.3912</td>
</tr>
<tr>
<td>700</td>
<td>208.0410</td>
<td>294.1639</td>
<td>522.2482</td>
<td>423.2702</td>
<td>561.2832</td>
<td>612.3912</td>
</tr>
<tr>
<td>800</td>
<td>208.0410</td>
<td>294.1639</td>
<td>522.2482</td>
<td>423.2702</td>
<td>561.2832</td>
<td>612.3912</td>
</tr>
<tr>
<td>900</td>
<td>208.0410</td>
<td>294.1639</td>
<td>522.2482</td>
<td>423.2702</td>
<td>561.2832</td>
<td>612.3912</td>
</tr>
</tbody>
</table>

Minimum: 2.0 2.0 -2.5

Maximum: 2.0 2.0 50.0

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>871.5129</td>
<td>871.5129</td>
<td>0.4</td>
<td>0.5</td>
<td>28.5</td>
<td>86.7</td>
<td>0.0</td>
<td>C54 H72 O8 Na</td>
</tr>
<tr>
<td>871.5149</td>
<td>871.5149</td>
<td>-2.8</td>
<td>-3.3</td>
<td>21.5</td>
<td>85.9</td>
<td>5.2</td>
<td>C56 H71 O8</td>
</tr>
<tr>
<td>871.5114</td>
<td>871.5114</td>
<td>1.5</td>
<td>1.7</td>
<td>-0.5</td>
<td>90.4</td>
<td>9.7</td>
<td>C38 H70 O21</td>
</tr>
</tbody>
</table>
Figure S92. IR spectrum of walsuchochoid M (11)
Figure S93. 1H NMR spectrum of walsucochinoid N (12) in CDCl$_3$
Figure S94. 13C NMR spectrum of walsucochinoid N (12) in CDCl$_3$
Figure S95. HSQC spectrum of walsucochinoid N (12) in CDCl₃
Figure S96. HMBC spectrum of walsucochinoid N (12) in CDCl₃
Figure S97. ROESY spectrum of walsucochinoid N (12) in CDCl₃
Figure S98. ESI(+)MS spectrum of walsucochinoid N (12)

Display Report

<table>
<thead>
<tr>
<th>Analysis Info</th>
<th>Acquisition Date</th>
<th>Method</th>
<th>Operator</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Name</td>
<td>007-1001 D</td>
<td>Copy of DSOPEM62P.M</td>
<td>Administrator</td>
<td>esquire3000plus</td>
</tr>
<tr>
<td>Sample Name</td>
<td>ym-wall-10</td>
<td>Acquisition Date</td>
<td>03/14/11 12:54:09</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>/</td>
<td>Method</td>
<td>Copy of DSOPEM62P.M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>Ion Source Type</th>
<th>Ion Polarity</th>
<th>Positive</th>
<th>Alternating Ion Polarity</th>
<th>Mass Range Mode</th>
<th>Scan Begin</th>
<th>Scan End</th>
<th>Trap Drive</th>
<th>Auto MS/MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESI</td>
<td>SliPNormal</td>
<td>Scan Begin</td>
<td>100 m/z</td>
<td>off</td>
<td>1750 m/z</td>
<td>575 Volt</td>
<td>45.0 Volt</td>
<td>85.4</td>
<td>on</td>
</tr>
<tr>
<td>Capillary Exit</td>
<td>155.5 Volt</td>
<td>Scan End</td>
<td>45.0 Volt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accumulation Time</td>
<td>12473 EF</td>
<td>Trap Drive</td>
<td></td>
<td></td>
<td>Auto MS/MS</td>
<td>85.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intensity vs. time (min)

- **007-1001 D** TIC + AIF MS
- **007-1001 D** TIC + AIF MS
- **007-1001 D** UV Chromatogram: 201 nm

Intensity vs. m/z

- **ESI, 0.2 min (#489)**
- **ESI, 0.2 min (#489)**
- **ESI, 0.2 min (#489)**

Bruker Daltonics DataAnalysis 3.1 printed: 03/15/11 09:21:11 Page 1 of 1

104
Figure S99. HRESI(+)MS spectrum of walsucochinoid N (12)
Figure S100. IR spectrum of walsucochinoid N (12)
Figure S101. 1H NMR spectrum of walsucochinoid O (13) in CDCl$_3$
Figure S102. 13C NMR spectrum of walsucochinoid O (13) in CDCl$_3$
Figure S103. HSQC spectrum of walsucochinoid O (13) in CDCl$_3$
Figure S104. HMBC spectrum of walsuochinoid O (13) in CDCl₃
Figure S105. ROESY spectrum of walsucochinoid O (13) in CDCl$_3$
Figure S106. ESI(+)MS spectrum of walsucochinoid O (13)
Figure S107. ESI(−)MS spectrum of walsucochinoid O (13)
Figure S108. HRESI(+)MS spectrum of walsucochinoid O (13)

Elemental Composition Report

Sample: WAL-9

LCT PXE KE324

WAL-9_1104 39 (0.847) AM2 (Ar:10000.0:0.001.00); ABS; Cm (9.41)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>ppm</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>561.2831</td>
<td>561.2828</td>
<td>0.3</td>
<td>0.5</td>
<td>11.5</td>
<td>114.1</td>
<td>8.0</td>
<td>C32 H42 O7 Na</td>
</tr>
</tbody>
</table>

Single Mass Analysis

- **Tolerance:** 2.0 mDa / DBE: min = -1.5, max = 50.0
- **Element prediction:** Off
- **Number of isotope peaks used for i-FIT:** 3

Monoisotopic Mass, Even Electron ions

- 208 formula(s) evaluated with 1 result within limits (up to 50 best isotopic matches for each mass)

Elements Used:

| C: 10-70 | H: 0-80 | O: 0-30 | Na: 0-1 |

04-Nov-2011 14:51:22

1. TOF MS ES+
2. 2.97e+004
Figure S109. IR spectrum of walsucochinoid O (13)
Figure S110. 1H NMR spectrum of walsucochinoid P (14) in CDCl$_3$
Figure S111. 13C NMR spectrum of walsucochinoid P (14) in CDCl$_3$
Figure S112. HSQC spectrum of walsucochinoid P (14) in CDCl₃
Figure S113. ROESY spectrum of walsucochinoid P (14) in CDCl₃
Figure S114. ESI(+)MS spectrum of walsucochinoid P (14)
Figure S115. ESI(−)MS spectrum of walsucochinoid P (14)
Figure S116. HRESI(+)MS spectrum of walsucochinoid P (14)
Figure S117. IR spectrum of walsuochinoid P (14)
Figure S118. 1H NMR spectrum of walsucochinoid Q (15) in CDCl$_3$
Figure S119. 13C NMR spectrum of walsucochinoid Q (15) in CDCl₃
Figure S120. HSQC spectrum of walsucochinoid Q (15) in CDCl$_3$
Figure S121. HMBC spectrum of walsucochinoid Q (15) in CDCl₃
Figure S122. ROESY spectrum of walsucochinoid Q (15) in CDCl$_3$
Figure S123. ESI(+)MS spectrum of walsucochinoid Q (15)
Figure S124. ESI(−)MS spectrum of walsucochinoid Q (15)
Figure S125. HRESI(+)MS spectrum of walsucochinoid Q (15)

Elemental Composition Report

Single Mass Analysis
- Tolerance = 2.0 mDa / DBE: min = -1.5, max = 50.0
- Element prediction: Off
- Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron ions
277 formula(e) evaluated with 2 results within limits (up to 50 best isotopic matches for each mass)

Elements Used
- C: 10-70
- H: 0-80
- O: 0-30
- Na: 0-1

WAL-8

WAL-8_1104 19 (0.405) AM2 (Av:10000.0.00.00.100); ABS: Cm (5.28)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>559.2676</td>
<td>559.2672</td>
<td>0.4</td>
<td>0.7</td>
<td>12.5</td>
<td>113.3</td>
<td>0.0</td>
<td>C32 H40 O7 Na</td>
</tr>
<tr>
<td>559.2696</td>
<td>559.2692</td>
<td>-2.0</td>
<td>-3.6</td>
<td>15.5</td>
<td>118.1</td>
<td>4.8</td>
<td>C34 H39 O7</td>
</tr>
</tbody>
</table>
Figure S126. IR spectrum of walsucochinoid Q (15)
Figure S127. 1H NMR spectrum of walsucochinoid R (16) in CDCl$_3$
Figure S128. 13C NMR spectrum of walsucochinoid R (16) in CDCl$_3$
Figure S129. HSQC spectrum of walsucochinoid R (16) in CDCl₃
Figure S130. HMBC spectrum of walsuochinoid R (16) in CDCl$_3$
Figure S131. ROESY spectrum of walsucochinoid R (16) in CDCl₃
Figure S132. ESI(+)MS spectrum of walsucochinoid R (16)
Figure S133. HRESI(+)MS spectrum of walsucochinoid R (16)

Elemental Composition Report

Single Mass Analysis
- Tolerance = 2.0 PPM / DBE: min = -1.5, max = 50.0
- Element prediciton: Off
- Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron ions
313 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)

Elements Used:
- C: 10-70
- H: 0-80
- O: 0-30
- Na: 0-1

WAL-22

LCT PXE KE324

WAL-22_D1226_11 (6.22%) AME (Ar,10000.0,0.00,1.00); ABS; Cm (11:30)

Minimum:
- 1.5

Maximum:
- 5.0
- 2.0
- 50.0

Mass

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>607.3271</td>
<td>607.3271</td>
<td>0.0</td>
<td>0.0</td>
<td>13.5</td>
<td>66.1</td>
<td>0.0</td>
<td>C36 H47 O8</td>
</tr>
</tbody>
</table>
Figure S134. IR spectrum of walsucochinoid R (16)