Supporting Information

Pure Shift Approach for Fast and Accurate
Extraction of Heteronuclear Couplings

Sachin Rama Chaudhari and N. Suryaprakash

NMR Research Centre, Solid State and Structural Chemistry Unit,
Indian Institute of Science, Bangalore-560012

*Corresponding Author

e-mail: nsp@nrc.iisc.ernet.in
Tel: 0091 80 22933300, 919845124802
Fax: 0091 8023601550
INDEX

S1: (a) 1H NMR of 2-Fluroacetanilide in CDCl$_3$; (b) Pure shift NMR spectrum of the same molecule depicting only $^nJ_{HF}$ couplings.

S2: (a) 1H NMR of 2-fluoropyridine in CDCl$_3$; (b) Pure shift NMR spectrum showing only $^nJ_{HF}$ couplings.

S3: 2,3-difluoro nitrophenol (e) 1H NMR data in CDCl$_3$. (a) 1H NMR of 1; (b) Pure shift NMR spectrum showing only $^nJ_{HF}$ couplings.
(a) The 1H NMR spectrum of 2-fluoroacetanilide in CDCl$_3$. (b) Pure shift spectrum of the same molecule depicting only $^aJ_{HF}$ couplings. The measured coupling values (doublet separations are reported in Hz) are given at the top of each chemically non-equivalent proton.
(a) The 1H NMR spectrum of 2-fluoropyridine in CDCl$_3$; (b) Pure shift spectrum of the same molecule depicting only $^4J_{HF}$ couplings. The measured coupling values (doublet separations in Hz) are given at the top of each chemically non-equivalent proton.
(a) The 1H NMR spectrum of 2,3-difluoro-nitrophenol in CDCl$_3$; (b) Pure shift spectrum of the same molecule depicting only $^4J_{HF}$ couplings. The measured coupling values (doublet separations in Hz) are given at the top of each chemically non-equivalent proton.