Chiral ionic liquid crystals with a bulky rigid core from renewable camphorsulfonic acid

Xiaoping Rao, Jinwen Zhang,* Jianqiang Zheng, Zhanqian Song and Shibin Shang

a Institute of Chemical Industry of Forestry Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; National Engineering Lab. for Biomass Chemical Utilization; Key and Lab. on Forest Chemical Engineering, SFA, Nanjing 210042, China. Fax: + 86 25-85413445; Tel: + 86-25-85482452; E-mail: rxping2001@163.com

b School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, WA, 99164, USA. Fax: +1 509-335-5077; Tel: +1 509-335-8723; E-mail: jwzhang@wsu.edu

c Institute of Forest New Technology, CAF, Beijing 100091, PR China

* To whom correspondence should be addressed. Tel.: 509-335-8723; Fax: 509-335-5077; E-mail: jwzhang@wsu.edu.
1. TGA results

![TGA curve of L-C18ACS measured in the N2 atmosphere.](image)

Figure S1. TGA curve of L-C18ACS measured in the N2 atmosphere.

2. FTIR spectra of D-CnACSs

![FTIR spectra of D-CnACSs](image)

Figure S2. FTIR spectra of D-CnACSs.
Figure S2. FTIR spectra of (a) D-C\textsubscript{12}ACS, (b) D-C\textsubscript{14}ACS, (c) D-C\textsubscript{16}ACS and (d) D-C\textsubscript{18}ACS at different temperatures.

3. X-Ray diffraction patterns of D-C\textsubscript{n}ACSs
In situ: 90 ºC

RT

b: D-C14ACS

34.22 Å

31.98 Å

2 proph 0

Intensity

Intensity

20/degree

20/degree

2: D-C16ACS

36.78 Å

40.12 Å
Figure S3. X-Ray diffraction patterns of (a) D-C$_{12}$ACS, (b) D-C$_{14}$ACS, (c) D-C$_{16}$ACS and (d) D-C$_{18}$ACS at room temperature and 90 °C.