Supporting Information

Polystyrene-Block-Poly (methylmethacrylate) Composite Materials Film as a Gate Dielectric for Plastic Thin-Film Transistor Applications

Jagan Singh Meenaab, Min-Ching Chua, Ranjodh Singha, Chung-Shu Wua, Umesh Chandb, Hsin-Chiang Youc, Po-Tsun Liua, Han-Ping D. Shieha and Fu-Hsiang Koa*

aDepartment of Materials Science and Engineering, Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 30010, ROC, Taiwan

bDepartment of Electronics Engineering, National Chiao Tung University, Hsinchu 30010, ROC, Taiwan

cDepartment of Electronic Engineering, National Chin–Yi University of Technology, Taichung 41170, ROC, Taiwan.

*E-mail: fhko@mail.nctu.edu.tw
Figure S1. Leakage current density measurements test for 1 day to 4 weeks for double layer PS–b–PMMA film (28 nm thick) as dielectric layer in MIM structured device.
Figure S2. Transfer characteristic ($I_{DS}-V_{GS}$), when $V_{DS}=10$ V for double layer PS–b–PMMA film (28 nm thick) as gate dielectric layer and ZnO as semiconductor active layer for day 1 to 4 weeks.