Supporting Materials For

Polyaniline Coating on Carbon Fiber Fabric for Hexavalent Chromium Removal

Bin Qiu,¹,² Cuixia Xu,¹ Dezhi Sun,²* Huige Wei,¹ Xi Zhang,¹ Jiang Guo,¹
Qiang Wang,² Dan Rutman,¹ Zhanhu Guo¹* and Suying Wei¹,³,*

¹Integrated Composites Laboratory (ICL)
Dan F Smith Department of Chemical Engineering
Lamar University, Beaumont, TX 77710 USA

²College of Environmental Science and Engineering
Beijing Forestry University, Beijing, 100083 China

³Department of Chemistry and Biochemistry
Lamar University, Beaumont, TX 77710 USA

*Corresponding author sundezhi@bifu.edu.cn phone (86)10 6233 6596
suying.wei@lamar.edu Phone (409) 880 7976
zhanhu.guo@lamar.edu Phone (409) 880-7654
Fig. S1 XPS N1s spectra of synthesized PANI/CF with a 10.0 wt% PANI loading.

Fig. S2 nitrogen adsorption-desorption isotherm of (a) the as-received CFs, and PANI/CFs with a PANI loading of (b) 5.0, (c) 10.0, (d) 15.0, (e) 20.0 wt%.
Fig. S3 Effect of contact time on Cr(VI) removal efficiency by PANI/CF with a 10.0 wt% PANI loading, ([PANI/CF]: 2.75 g/L, [Cr(VI)]: (a) 1000 and (b) 600 μg/L, pH: 1.0).

Fig. S4 (A) XPS C1s and (B) N1s spectra of PANI/CF after adsorption of Cr(VI) solution with an initial Cr(VI) concentration of 48.0 mg/L and pH at 1.0.
Fig. S5 TGA curves of regenerated PANI/CF after five adsorption/desorption cycles.