Supplementary Information

Hybrid Poly(3-hexyl thiophene):\(\text{TiO}_2\) Nanorods Oxygen Sensor

Che-Pu Hsu,\(^a\) Tsung-Wei Zeng,\(^a\) Ming-Chung Wu,\(^b\)
Yu-Chieh Tu,\(^a\) Hsueh-Chung Liao,\(^a\) and Wei-Fang Su,\(^*a\)

\(^a\) Department of Materials Science and Engineering, National Taiwan University, Taipei 106-17, Taiwan
\(^b\) Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333-02, Taiwan

†These authors contributed equally to the work.
The response time and recovery time of the oxygen sensor

Herein we used exponential curve to accurately fit the experiment data of Fig. 7 (b) (60°C) and estimate the response time and recovery time of our sensors according to the definitions:

Response time: The response time is defined as the time our sensor takes to reach 90% of saturated R_0/R (steady-state gain value) after the exposure to oxygen gas.

Recovery time: The recovery time is defined as the time our sensor takes to reach 20% of the initial R_0/R values (before exposure to oxygen gas).

![Figure S1](image1)

Fig. S1. Sensing responses of P3HT/TiO$_2$ hybrid film (50wt% TiO$_2$) testing at 60°C.

![Figure S2](image2)

Fig. S2. Sensing recovery of P3HT/TiO$_2$ hybrid film (50wt% TiO$_2$) testing at 60°C.
Fig. S1 and S2 present the sensing responses and recovery of P3HT/TiO$_2$ hybrid film (50wt% TiO$_2$) testing at 60°C. The red lines represent the exponential fitting results. According to the formula and the definitions, the response and recovery time can be estimated to be 4.1 and 2.3 minutes respectively.