Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Halogen-free pyrrolidinium bis(mandelato)borate ionic liquids: some physicochemical properties and lubrication performance as additives to polyethylene glycol

> Mamoun Taher¹, Faiz Ullah Shah¹, Andrei Filippov^{1,2}, Patrick de Baets³, Sergei Glavatskih^{3,4,*} and Oleg N. Antzutkin^{1,5,*}

¹Chemistry of Interfaces, Luleå University of Technology, SE-97187, Luleå, Sweden

²Kazan Federal University, 420008 Kazan, Russian Federation

³Department of Mechanical Construction and Production, Ghent University,

B-9000 Ghent, Belgium

⁴System and Component Design, KTH Royal Institute of Technology,

SE-10044 Stockholm, Sweden

⁵Department of Physics, University of Warwick, CV4 7AL, Coventry, United Kingdom

*Corresponding authors: segla@kth.se and olan@ltu.se

Content:

- Synthesis and characterisation of pyrrolidinium bis(mandelato)borate ILs, [C_nC₁Pyrr][BMB]
- Elemental Analysis
- Inductively coupled plasma sector field mass spectrometry (ICP-SFMS)
- Karl Fischer Titration
- ¹H, ¹³C and ¹¹B NMR spectra of $[C_nC_1Pyrr][BMB]$ ILs (Figs. SI-1 to SI-24)
- Mass spectrum of PEG (Fig. SI-25)
- DSC thermograms of selected $[C_nC_1Pyrr][BMB]$ ILs (Fig. SI-26)
- A representative labelled DSC thermogram of $[C_4C_1Pyrr][BMB]$ hf-BIL (Fig. SI-27)
- Friction and wear data of $[C_nC_1Pyrr][BMB]$ ILs as additives in PEG (Figs. SI-28 to SI-31)
- Water content in hf-BILs (Table SI-1)
- Composition, hardness and surface roughness of the 52100 Steel (Table SI-2)
- Measured densities of N-alkyl-N-methylpyrrolidinium bis(mandelato)borate hf-BILs (Table SI-3)
- Wear coefficient calculation
- References

Synthesis and characterisation of pyrrolidinium bis(mandelato)borate ILs, [C_nC₁Pyrr][BMB]

N-pentyl-N-methylpyrrolidinium bis(mandelato)borate, [C₅C₁Pyrr][BMB]

The procedure is similar to that used for the synthesis of $[C_4C_1Pyrr][BMB]$ described in 2.2.1. Bis(mandelato)borate sodium salt was synthesised in an aqueous solution of mandelic acid (15.21 g, 100 mmol), sodium carbonate (2.65 g, 25 mmol) and boric acid (3.09 g, 50 mmol) and mixed up with *N*-pentyl-*N*-methylpyrrolidinium bromide (11.81 g, 50 mmol), which was prepared from *N*-methylpyrrolidine and 1-bromopentane in toluene. An ionic liquid was obtained in 89 % yield (41.4 g).

Anal. Calcd. for $C_{26}H_{34}O_6BN$ (MW 467.06 g/mol) C, 66.81; H, 7.33; N, 2.99. Found: C, 65.3; H, 7.4; N, 3.1.

¹<u>H NMR (359.92 MHz, CDCl₃)</u>: 7.65-7.56 (m, 4H, C₆*H*₅), 7.35-7.27 (m, 4H, C₆*H*₅), 7.26-7.23 (m, 2H, C₆*H*₅), 5.28 (d, 1H, ⁴*J*_{*HH*} = 2.8 Hz, C₆H₅–C*H*), 5.24 (d, 1H, ⁴*J*_{*HH*} = 4.2 Hz, C₆H₅–C*H*), 3.12-2.96 (m, 4H, N-(C*H*₂-CH₂-)₂, pyrrolidinium ring), 2.96-2.91 (m, 2H, N-C*H*₂-CH₂-, alkyl chain), 2.16 (s, 3H, N-C*H*₃), 1.89-1.87 (m, 4H, N-(CH₂-C*H*₂-)₂, pyrrolidinium ring), 1.48-1.39 (m, 2H, N-CH₂-CH₂-, alkyl chain), 1.27-1.09 (m, 4H, (-C*H*₂-)₂, alkyl chain), 0.85 (t, 3H, ³*J*_{HH} = 7.5 Hz, -CH₂-CH₃, alkyl chain) ppm.

 $\frac{{}^{13}\text{C NMR (90.506 MHz, CDCl_3):}}{(12\text{C}, \text{ aromatic groups}), 64.17 (t, 2C, {}^{1}J_{CH} = 75.9 \text{ Hz}, \text{N-CH}_2\text{-}, \text{pyrrolidinium ring}), 52.68 (t, 1C, {}^{1}J_{CH} = 87.9 \text{ Hz}, \text{N-CH}_2\text{-}, \text{alkyl chain}), 47.88 (q, 1C, {}^{1}J_{CH} = 68.2 \text{ Hz}, \text{N-CH}_3), 28.08-19.85 (5C methylene carbons of the pyrrolidinium ring and methylene carbons of the alkyl chain), 13.83 (q, 1C, {}^{1}J_{CH} = 55.7 \text{ Hz}, -CH_3, \text{alkyl chain}) \text{ ppm.}$

¹¹B NMR (115.48 MHz, CDCl₃): 11.06 ppm.

N-hexyl-N-methylpyrrolidinium bis(mandelato)borate, [C₆C₁Pyrr][BMB]

The procedure is similar to that used for the synthesis of $[C_4C_1Pyrr][BMB]$ described in 2.2.1. Bis(mandelato)borate sodium salt was synthesised in an aqueous solution of mandelic acid (15.21 g, 100 mmol), sodium carbonate (2.65 g, 25 mmol) and boric acid (3.09 g, 50 mmol) and mixed up with *N*-hexyl-*N*-methylpyrrolidinium bromide (12.51 g, 50 mmol), which was prepared from *N*-methylpyrrolidine and 1-bromohexane in toluene. An ionic liquid was obtained in 87 % yield (41.9 g).

Anal. Calcd. for C₂₇H₃₆O₆BN (MW 481.38 g/mol) C, 67.36; H, 7.53; N, 2.91. Found: C, 66.3; H, 7.6; N, 3.0.

¹<u>H NMR (359.92 MHz, CDCl₃)</u>: 7.62-7.53 (m, 4H, C₆*H*₅), 7.32-7.31 (m, 4H, C₆*H*₅), 7.28-7.23 (m, 2H, C₆*H*₅), 5.27 (d, 1H, ${}^{4}J_{HH}$ = 3.1 Hz, C₆H₅–C*H*), 5.23 (d, 1H, ${}^{4}J_{HH}$ = 3.7 Hz, C₆H₅–C*H*), 3.05-2.99 (m, 4H, N-(C*H*₂-CH₂-)₂, pyrrolidinium ring), 2.89-2.85 (m, 2H, N-C*H*₂-CH₂-, alkyl chain), 2.54 (s,

3H, N-C*H*₃), 1.84-1.81 (m, 4H, N-(CH₂-C*H*₂-)₂, pyrrolidinium ring), 1.42-1.40 (m, 2H, N-CH₂-C*H*₂-CH₂-, alkyl chain), 1.26-1.10 (m, 6H, (-C*H*₂-)₃, alkyl chain), 0.85 (t, 3H, ${}^{3}J_{HH} = 7.4$ Hz, CH₂-C*H*₃, alkyl chain) ppm.

¹³<u>C NMR (90.506 MHz, CDCl₃):</u> 177.71 (s, 2C, >*C*=O), 140.10 (s, 2C, -*C*H(O)-), 129.19-125.30 (12C, aromatic groups), 64.08 (t, 2C, ${}^{1}J_{CH} = 77.2$ Hz, N-*C*H₂-, pyrrolidinium ring), 53.71 (t, 1C, ${}^{1}J_{CH} = 86.8$ Hz, N-*C*H₂-, alkyl chain), 47.80 (q, 1C, ${}^{1}J_{CH} = 67.7$ Hz, N-*C*H₃), 32.44-19.69 (6C methylene carbons of the pyrrolidinium ring and methylene carbons of the alkyl chain), 13.90 (q, 1C, ${}^{1}J_{CH} = 56.1$ Hz, -*C*H₃, alkyl chain) ppm.

¹¹B NMR (115.48 MHz, CDCl₃): 11.09 ppm.

N-heptyl-N-methylpyrrolidinium bis(mandelato)borate, [C₇C₁Pyrr][BMB]

The procedure is similar to that used for the synthesis of $[C_4C_1Pyrr][BMB]$ described in 2.2.1. Bis(mandelato)borate sodium salt was synthesised in an aqueous solution of mandelic acid (15.21 g, 100 mmol), sodium carbonate (2.65 g, 25 mmol) and boric acid (3.09 g, 50 mmol) and mixed up with *N*-heptyl-*N*-methylpyrrolidinium bromide (13.21 g, 50 mmol), which was prepared from *N*-methylpyrrolidine and 1-bromoheptane in toluene. An ionic liquid was obtained in 87 % yield (42.9 g).

Anal. Calcd. for C₂₈H₃₈O₆BN (MW 495.41 g/mol) C, 67.88; H, 7.74; N, 2.82. Found: C, 67.1; H, 7.8; N, 3.0.

¹<u>H NMR (359.92 MHz, CDCl₃)</u>: 7.64-7.53 (m, 4H, C₆*H*₅), 7.31-7.39 (m, 4H, C₆*H*₅), 7.28-7.24 (m, 2H, C₆*H*₅), 5.28 (d, 1H, ⁴*J*_{*HH*} = 3.8 Hz, C₆*H*₅–C*H*), 5.24 (d, 1H, ⁴*J*_{*HH*} = 4.7 Hz, C₆*H*₅–C*H*), 3.04-2.90 (m, 4H, N-(C*H*₂-CH₂-)₂, pyrrolidinium ring), 2.89-2.85 (m, 2H, N-C*H*₂-CH₂-, alkyl chain), 2.55 (s, 3H, N-C*H*₃), 1.85-1.81 (m, 4H, N-(CH₂-CH₂-)₂, pyrrolidinium ring), 1.44-1.41 (m, 2H, N-CH₂-CH₂-, alkyl chain), 1.38-1.07 (m, 8H, (-C*H*₂-)₄, alkyl chain), 0.87 (t, 3H, ³*J*_{HH} = 7.5 Hz, -CH₂-CH₃, alkyl chain) ppm.

¹³C NMR (90.506 MHz, CDCl₃): 177.92 (s, 2C, >*C*=O), 140.07 (s, 2C, -*C*H(O)-), 129.13-125.31 (12C, aromatic groups), 64.11 (t, 2C, ${}^{1}J_{CH} = 77.2$ Hz, N-*C*H₂-, pyrrolidinium ring), 53.55 (t, 1C, ${}^{1}J_{CH} = 88.1$ Hz, N-*C*H₂-, alkyl chain), 47.86 (q, 1C, ${}^{1}J_{CH} = 66.5$ Hz, N-*C*H₃), 32.84-19.76 (7C methylene carbons of the pyrrolidinium ring and methylene carbons of the alkyl chain), 13.96 (q, 1C, ${}^{1}J_{CH} = 54.1$ Hz, -*C*H₃, alkyl chain) ppm.

¹¹B NMR (115.48 MHz, CDCl₃): 11.09 ppm.

*N-octyl-N-methylpyrrolidinium bis(mandelato)borate, [C*₈*C*₁*Pyrr][BMB]*

The procedure is similar to that used for the synthesis of $[C_4C_1Pyrr][BMB]$ described in 2.2.1. Bis(mandelato)borate sodium salt was synthesised in an aqueous solution of mandelic acid (15.21 g, 100 mmol), sodium carbonate (2.65 g, 25 mmol) and boric acid (3.09 g, 50 mmol) and mixed up with *N*-octyl-*N*-methylpyrrolidinium chloride (11.69 g, 50 mmol), which was prepared from *N*-methylpyrrolidine and 1-chloroctane in toluene. An ionic liquid was obtained in 70 % yield (35.7 g).

Anal. Calcd. for C₂₉H₄₀O₆BN (MW 509.44 g/mol) C, 68.37; H, 7.91; N, 2.75. Found: C, 67.9; H, 8.0; N, 2.9.

¹<u>H NMR (359.92 MHz, CDCl₃)</u>: 7.63-7.54 (m, 4H, C₆*H*₅), 7.34-7.30 (m, 4H, C₆*H*₅), 7.29-7.25 (m, 2H, C₆*H*₅), 5.29 (d, 1H, ${}^{4}J_{HH}$ = 6.3 Hz, C₆H₅–C*H*), 5.25 (d, 1H, ${}^{4}J_{HH}$ = 5.4 Hz, C₆H₅–C*H*), 3.10-2.91 (m, 4H, N-(C*H*₂-CH₂-)₂, pyrrolidinium ring), 2.88-2.84 (m, 2H, N-C*H*₂-CH₂-, alkyl chain), 2.58 (s, 3H, N-C*H*₃), 1.89-1.84 (m, 4H, N-(CH₂-C*H*₂-)₂, pyrrolidinium ring), 1.47-1.40 (m, 2H, N-CH₂-CH₂-, alkyl chain), 1.37-1.12 (m, 10H, (-C*H*₂-)₅, alkyl chain), 0.89 (t, 3H, ${}^{3}J_{HH}$ = 8.4 Hz, -CH₂-CH₃, alkyl chain) ppm.

 $\frac{{}^{13}\text{C NMR (90.506 MHz, CDCl_3):}}{(12\text{C}, \text{ aromatic groups}), 64.31 (t, 2\text{C}, {}^{1}J_{\text{CH}} = 77.19 \text{ Hz}, \text{N-CH}_2\text{-}, \text{pyrrolidinium ring}), 48.04 (q, 1\text{C}, {}^{1}J_{\text{CH}} = 67.2 \text{ Hz}, \text{N-CH}_3), 33.02\text{-}19.77 (8\text{C}, \text{methylene carbons of the pyrrolidinium ring and methylene carbons of the alkyl chain}), 14.06 (q, 1\text{C}, {}^{1}J_{\text{CH}} = 56.4 \text{ Hz}, \text{-CH}_3, \text{alkyl chain}) \text{ ppm.}$

¹¹B NMR (115.48 MHz, CDCl₃): 11.09 ppm.

N-decyl-N-methylpyrrolidinium bis(mandelato)borate, $[C_{10}C_1Pyrr][BMB]$

The procedure is similar to that used for the synthesis of $[C_4C_1Pyrr][BMB]$ described in 2.2.1. Bis(mandelato)borate sodium salt was synthesised in an aqueous solution of with mandelic acid (15.21 g, 100 mmol), sodium carbonate (2.65 g, 25 mmol) and boric acid (3.09 g, 50 mmol) and mixed up with *N*-decyl-*N*-methylpyrrolidinium bromide (15.32 g, 50 mmol), which was prepared from *N*-methylpyrrolidine and 1-bromodecane in toluene. An ionic liquid was obtained in 84 % yield (44.9 g).

Anal. Calcd. for $C_{31}H_{44}O_6BN$ (MW 537.49 g/mol) C, 69.71; H, 8.25; N, 2.60. Found: C, 68.4; H, 8.25; N, 2.75.

¹<u>H NMR (359.92 MHz, CDCl₃)</u>: 7.63-7.53 (m, 4H, C₆*H*₅), 7.34-7.39 (m, 4H, C₆*H*₅), 7.29-7.22 (m, 2H, C₆*H*₅), 5.28 (d, 1H, ⁴*J*_{*HH*} = 2.8 Hz, C₆H₅–C*H*), 5.24 (d, 1H, ⁴*J*_{*HH*} = 4.6 Hz, C₆H₅–C*H*), 3.04-2.90 (m, 4H, N-(C*H*₂-CH₂-)₂, pyrrolidinium ring), 2.88-2.85 (m, 2H, N-C*H*₂-CH₂-, alkyl chain), 2.55 (s, 3H, N-C*H*₃), 1.84-1.81 (m, 4H, N-(CH₂-CH₂-)₂, pyrrolidinium ring), 1.41-1.39 (m, 2H, N-CH₂-CH₂-, alkyl chain), 1.38-1.07 (m, 14H, (-C*H*₂-)₇, alkyl chain), 0.89 (t, 3H, ³*J*_{HH} = 7.5 Hz, -CH₂-CH₃, alkyl chain) ppm.

 $\frac{{}^{13}\text{C NMR (90.506 MHz, CDCl_3):}}{(12\text{C}, \text{ aromatic groups}), 64.04 (t, 2\text{C}, {}^{1}J_{\text{CH}} = 77.2 \text{ Hz}, \text{N-CH}_2\text{-}, \text{pyrrolidinium ring}), 47.81 (q, 1\text{C}, {}^{1}J_{\text{CH}} = 65.1 \text{ Hz}, \text{N-CH}_3), 33.25\text{-}19.67 (10\text{C}, \text{methylene carbons of the pyrrolidinium ring and methylene carbons of the alkyl chain}), 14.12 (q, 1\text{C}, {}^{1}J_{\text{CH}} = 55.3 \text{ Hz}, \text{-CH}_3, \text{alkyl chain}) \text{ppm.}$

¹¹B NMR (115.48 MHz, CDCl₃): 11.08 ppm.

N-dodecyl-N-methylpyrrolidinium bis(mandelato)borate, $[C_{12}C_1Pyrr][BMB]$

The procedure is similar to that used for the synthesis of $[C_4C_1Pyrr][BMB]$ described in 2.2.1. Bis(mandelato)borate sodium salt was synthesised in an aqueous solution of mandelic acid (15.21 g, 100 mmol), sodium carbonate (2.65 g, 25 mmol) and boric acid (3.09 g, 50 mmol) and mixed up with *N*-dodecyl-*N*-methylpyrrolidinium chloride (14.49 g, 50 mmol), which was prepared from *N*-methylpyrrolidine and 1-chlorododecane in toluene. An ionic liquid was obtained in 68 % yield (38.7 g).

Anal. Calcd. for C₃₃H₄₈O₆BN (MW 565.54 g/mol) C, 70.08; H, 8.55; N, 2.47. Found: C, 69.1; H, 8.9; N, 2.6.

¹<u>H NMR (359.92 MHz, CDCl₃)</u>: 7.63-7.54 (m, 4H, C₆*H*₅), 7.34-7.30 (m, 4H, C₆*H*₅), 7.29-7.22 (m, 2H, C₆*H*₅), 5.29 (d, 1H, ⁴*J*_{*HH*} = 4.2 Hz, C₆H₅–C*H*), 5.25 (d, 1H, ⁴*J*_{*HH*} = 5.9 Hz, C₆H₅–C*H*), 3.10-3.05 (m, 4H, N-(C*H*₂-CH₂-)₂, pyrrolidinium ring), 2.87-2.84 (m, 2H, N-C*H*₂-CH₂-, alkyl chain), 2.58 (s, 3H, N-CH₃), 1.88-1.83 (m, 4H, N-(CH₂-CH₂-)₂, pyrrolidinium ring), 1.44-1.34 (m, 2H, N-CH₂-CH₂-, alkyl chain), 1.26-1.09 (m, 18H, (-C*H*₂-)₉, alkyl chain), 0.88 (t, 3H, ³*J*_{HH} = 7.5 Hz, -CH₂-CH₃, alkyl chain) ppm.

 $\frac{{}^{13}\text{C NMR (90.506 MHz, CDCl_3):}}{(12\text{C}, \text{ aromatic groups}), 64.18 (t, 2\text{C}, {}^{1}J_{\text{CH}} = 76.3 \text{ Hz}, \text{N-CH}_2\text{-}, \text{pyrrolidinium ring}), 47.92 (q, 1\text{C}, {}^{1}J_{\text{CH}} = 68.3 \text{ Hz}, \text{N-CH}_3), 32.45\text{-}19.77 (12\text{C}, \text{ methylene carbons of the pyrrolidinium ring and methylene carbons of the alkyl chain}), 16.23 (q, 1\text{C}, {}^{1}J_{\text{CH}} = 56.4 \text{ Hz}, \text{-CH}_3, \text{alkyl chain}) \text{ ppm.}$

¹¹B NMR (115.48 MHz, CDCl₃): 10.97 ppm.

N-tetradecyl-N-methylpyrrolidinium bis(mandelato)borate, $[C_{14}C_1Pyrr][BMB]$

The procedure is similar to that used for the synthesis of $[C_4C_1Pyrr][BMB]$ described in 2.2.1. Bis(mandelato)borate sodium salt was synthesised in an aqueous solution of mandelic acid (15.21 g, 100 mmol), sodium carbonate (2.65 g, 25 mmol) and boric acid (3.09 g, 50 mmol) and mixed up with *N*-tetradecyl-*N*-methylpyrrolidinium bromide (18.12 g, 50 mmol), which was prepared from *N*-methylpyrrolidine and 1-bromotetradecane in toluene. An ionic liquid was obtained in 72 % yield (42.9 g).

Anal. Calcd. for $C_{35}H_{52}O_6BN$ (MW 593.60 g/mol) C, 70.81; H, 8.83; N, 2.36. Found: C, 69.4; H, 9.05; N, 2.35.

¹<u>H NMR (359.92 MHz, CDCl₃)</u>: 7.65-7.57 (m, 4H, C₆*H*₅), 7.36-7.30 (m, 4H, C₆*H*₅), 7.27-7.21 (m, 2H, C₆*H*₅), 5.33 (d, 1H, ⁴*J*_{*HH*} = 6.3 Hz, C₆*H*₅–C*H*), 5.26 (d, 1H, ⁴*J*_{*HH*} = 5.7 Hz, C₆*H*₅–C*H*), 3.11-3.10 (m, 4H, N-(C*H*₂-CH₂-)₂, pyrrolidinium ring), 2.86-2.82 (m, 2H, N-C*H*₂-CH₂-, alkyl chain), 2.35 (s, 3H, N-C*H*₃), 1.92-1.81 (N-(CH₂-C*H*₂-)₂, pyrrolidinium ring), 1.48-1.39 (m, 2H, N-CH₂-C*H*₂-CH₂-, alkyl chain), 1.26-1.20 (m, 22H, (-C*H*₂-)₁₁, alkyl chain), 0.88 (t, 3H, ³*J*_{HH} = 7.5 Hz, -CH₂-C*H*₃, alkyl chain) ppm.

 $\frac{{}^{13}\text{C NMR (90.506 MHz, CDCl_3):}}{(12\text{C}, \text{ aromatic groups}), 64.38 (t, 2\text{C}, {}^{1}J_{\text{CH}} = 77.3 \text{ Hz}, \text{N-CH}_2\text{-, pyrrolidinium ring}), 48.19 (q, 1\text{C}, {}^{1}J_{\text{CH}} = 67.5 \text{ Hz}, \text{N-CH}_3), 29.68-19.95 (14\text{C}, \text{ methylene carbons of the pyrrolidinium ring and methylene carbons of the alkyl chain}), 16.32 (q, 1\text{C}, {}^{1}J_{\text{CH}} = 57.3 \text{ Hz}, -\text{CH}_3, \text{alkyl chain}) \text{ ppm.}$

¹¹B NMR (115.48 MHz, CDCl₃): 10.90 ppm.

Elemental Analysis

The elemental analysis for carbon, hydrogen and nitrogen (CHN) was performed according to the Dumas method using Flash EA 1112 from Thermo Finnigan elemental analyser. About 1 mg of the sample was weighed in a tin capsule, sealed and placed in an auto sampler, from which it was dropped into a combustion chamber. As the sample entered the combustion chamber oxygen was injected into the carrier gas (He), which flowed through the combustion tube. The temperature was raised to 1800 °C, which insured the complete combustion of the sample. Detection was made with a Hot Wire Detector (HWD). The quantification was made using certified external standards and the method of least squares with the correlation coefficient > 0.999.¹

Inductively Coupled Plasma Sector Field Mass Spectrometry (ICP-SFMS)

For sodium, chlorine and bromine elemental analysis, approximately 20 mg of sample was digested with 1 mL concentrated HNO₃ (MW-assisted digestion in closed Teflon vessels). After cooling to room temperature the digest was diluted with MQ water. Concentrations of the elements were determined by the ICP-SFMS using a combination of internal standardization and external calibration. Elemental analysis was carried out in the medium resolution range, $\Delta m/m = 4500$ (Finnigan MAT, Bremen, Germany).²

Karl Fischer Titration

831 Karl Fischer coulometer titration was used to determine water content in hf-BILs. HYDRANAL-COULOMAT AG (Fluka) was used as a reagent. Using an analytical balance about 100 mg of hf-BIL was measured and added to the titration vessel. Duplicate measurements were performed and the mean values and SD are calculated and tabulated in Table SI-1.

Figure SI-1. 359.92 MHz ¹H NMR spectrum of [C₄C₁Pyrr][BMB] in CDCl₃.

Figure SI-2. 90.506 MHz ¹³C NMR spectrum of [C₄C₁Pyrr][BMB] in CDCl₃.

Figure SI-3. 115.48 MHz ¹¹B NMR spectrum of [C₄C₁Pyrr][BMB] in CDCl₃.

Figure SI-4. 359.92 MHz ¹H NMR spectrum of [C₅C₁Pyrr][BMB] in CDCl₃.

Figure SI-6. 115.48 MHz ¹¹B NMR spectrum of $[C_5C_1Pyrr][BMB]$ in CDCl₃.

Figure SI-7. 359.92 MHz ¹H NMR spectrum of [C₆C₁Pyrr][BMB] in CDCl₃.

Figure SI-8. 90.506 MHz ¹³C NMR spectrum of [C₆C₁Pyrr][BMB] in CDCl₃.

Figure SI-9. 115.48 MHz ¹¹B NMR spectrum of $[C_6C_1Pyrr][BMB]$ in CDCl₃.

Figure SI-10. 359.92 MHz ¹H NMR spectrum of [C₇C₁Pyrr][BMB] in CDCl₃.

Figure SI-11. 90.506 MHz ¹³C NMR spectrum of [C₇C₁Pyrr][BMB] in CDCl₃.

Figure SI-12. 115.48 MHz ¹¹B NMR spectrum of [C₇C₁Pyrr][BMB] in CDCl₃.

Figure SI-13. 359.92 MHz ¹H NMR spectrum of [C₈C₁Pyrr][BMB] in CDCl₃.

Figure SI-14. 90.506 MHz ¹³C NMR spectrum of [C₈C₁Pyrr][BMB] in CDCl₃.

Figure SI-15. 115.48 MHz ¹¹B NMR spectrum of [C₈C₁Pyrr][BMB] in CDCl₃.

Figure SI-16. 359.92 MHz ¹H NMR spectrum of [C₁₀C₁Pyrr][BMB] in CDCl₃.

Figure SI-17. 90.506 MHz 13 C NMR spectrum of [C₁₀C₁Pyrr][BMB] in CDCl₃.

Figure SI-18. 115.48 MHz ¹¹B NMR spectrum of $[C_{10}C_1Pyrr][BMB]$ in CDCl₃.

Figure SI-19. 359.92 MHz ¹H NMR spectrum of [C₁₂C₁Pyrr][BMB] in CDCl₃.

Figure SI-20. 90.506 MHz ¹³C NMR spectrum of [C₁₂C₁Pyrr][BMB] in CDCl₃.

Figure SI-21. 115.48 MHz ¹¹B NMR spectrum of $[C_{12}C_1Pyrr][BMB]$ in CDCl₃.

Figure SI-23. 90.506 MHz 13 C NMR spectrum of [C₁₄C₁Pyrr][BMB] in CDCl₃.

Figure SI-24. 115.48 MHz ¹¹B NMR spectrum of $[C_{14}C_1Pyrr][BMB]$ in CDCl₃.

Figure SI-25. Mass spectrum of PEG

Figure SI-26. DSC thermograms of selected *N*-alkyl-*N*-methylpyrrolidinium bis(mandelato)borate hf-BILs.

Figure SI-27. A representative labelled DSC thermogram for $[C_4C_1Pyrr][BMB]$ hf-BIL showing T_g and C_p values.

Figure SI-28. Friction coefficient as a function of the sliding distance for steel discs lubricated with 5W40 oil, PEG and 3 wt% of the hf-BILs as additives in PEG. Measurements were performed at 15 N load and 0.2 m/s sliding speed at room temperature.

Figure SI-29. Friction coefficient as a function of the sliding distance for steel discs lubricated with 5W40 oil, PEG and 3 wt% of the hf-BILs as additives in PEG. Measurements were performed at 15 N load and 0.2 m/s sliding speed at room temperature.

Figure SI-30. Friction coefficient as a function of the sliding distance for steel discs lubricated with 5W40 oil, PEG and 3 wt% of the hf-BILs as additives in PEG. Measurements were performed at 15 N load and 0.2 m/s sliding speed at room temperature.

Figure SI-31. Wear depth as a function of sliding distance. Steel-steel contacts tested at room temperature, 15N load, sliding speed of 0.2 m/s.

Table SI-1.	Water,	sodium	and	halogen	content in	hf-BILs
-------------	--------	--------	-----	---------	------------	---------

hf-BIL	Water	Sodium (wt%)	Halogen (wt%)		
	$(wt\%) \pm SD$		Cl	Br	
[C ₄ C ₁ Pyrr][BMB]	0.082 ± 0.002	0.0198	0.0291	0.1784	
[C ₅ C ₁ Pyrr][BMB]	0.078 ± 0.003	0.0141	0.1114	0.5213	
[C ₆ C ₁ Pyrr][BMB]	0.090 ± 0.003	0.0254	0.0951	0.1829	
[C ₇ C ₁ Pyrr][BMB]	0.065 ± 0.007	0.0068	0.0360	0.1024	
[C ₈ C ₁ Pyrr][BMB]	0.109 ± 0.005	0.0135	0.0870	0.0629	
[C ₁₀ C ₁ Pyrr][BMB]	0.075 ± 0.003	0.0068	0.0697	0.3077	
$[C_{12}C_1Pyrr][BMB]$	0.038 ± 0.003	0.0134	0.3424	0.0244	
[C ₁₄ C ₁ Pyrr][BMB]	0.035 ± 0.007	0.0114	0.0376	1.0710	

Elemental composition (wt%)	AISI 52100 Steel			
С	0.95-1.05			
Si	0.15-0.35			
Mn	0.25-0.45			
Cr	1.30-1.65			
Мо	0.1 max			
S	0.025 max			
Р	0.025 max			
Others	0.15 max			
Fe	Balance			
Hardness (HRC)	67 (ball)			
	60 (disk)			
Ra (µm)	0.05 max (ball)			
	0.03 max (disk)			

 Table SI-2. Composition, hardness and surface roughness of the contact surfaces.

Table SI-3. Measured densities of *N*-alkyl-*N*-methylpyrrolidinium bis(mandelato)borate hf-BILs.

Т (К)	293	303	313	323	333	343	353
[C ₄ C ₁ Pyrr][BMB]	1.1992	1.1916	1.1854	1.1791	1.1719	1.1656	1.1583
[C ₅ C ₁ Pyrr][BMB]	1.1946	1.1876	1.1806	1.1742	1.1663	1.1593	1.1523
[C ₆ C ₁ Pyrr][BMB]	1.1840	1.1774	1.1698	1.1629	1.1562	1.1499	1.1429
[C ₇ C ₁ Pyrr][BMB]	1.1798	1.1724	1.1656	1.1585	1.1521	1.1452	1.1385
[C ₈ C ₁ Pyrr][BMB]	1.1705	1.1641	1.1568	1.1506	1.1443	1.1377	1.1311
[C ₁₀ C ₁ Pyrr][BMB]	1.1599	1.1524	1.1460	1.1396	1.1326	1.1260	1.1206
[C ₁₂ C ₁ Pyrr][BMB]	1.1504	1.1436	1.1367	1.1299	1.1235	1.1173	1.1112
[C ₁₄ C ₁ Pyrr][BMB]	1.1398	1.1342	1.1284	1.1222	1.1164	1.1098	1.1030

Wear coefficient calculation:

The wear coefficient was calculated using the formula below:

Wear Coefficient = Wear Volume / (Load × Sliding Distance)

References

- 1. <u>http://www.mikrokemi.se</u>.
- 2. <u>http://www.alsglobal.se</u>