Synthesis of mesoporous ZSM-5 catalysts using different mesogenous templates and the application in methanol conversion for enhanced catalyst lifespan

Quanyi Wang, a,b,e Shutao Xu, a Jingrun Chen, a,e Yingxu Wei, a,* Jinzhe Li, a Dong Fan, a,e Zhengxi Yu, a Yue Qi, a Yanli He, a Shuliang Xu, a Cuiyu Yuan, a You Zhou, a,e Jinbang Wang, a Mozhi Zhang, a,e Baolian Su, b,c,* and Zhongmin Liu,a,d,*

a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China * Corresponding authors: liuzm@dicp.ac.cn; weiyx@dicp.ac.cn; tel. 0086-411-84379335; Fax: 0086-411-84691570

b Laboratory of Inorganic Materials Chemistry (CMI), University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium. * Corresponding author: bao-lian.su@fundp.ac.be

c State key Laboratory of Advanced technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070, Wuhan, Hubei, China. * Corresponding author: baoliangu@whut.edu.cn

d State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

e University of Chinese Academy of Sciences, Beijing, 100049, China
Supporting Information

Fig. S1 The low angle XRD patterns of the mesoporous ZSM-5 samples.
Fig. S2 The selectivity of the generated products over ZSM-5, MZSM-5-A, and MZSM-5-B during methanol conversion (continuous flow reaction). Experimental conditions: WHSV = 6 h\(^{-1}\), T = 723 K, catalyst weight = 100 mg.