Supporting Information

A Facile Solvent-Free Route to Synthesize Ordered Mesoporous Carbons

Qiaowei Wanga,b, Yijie Mua, Weili Zhanga, Liangshu Zhonga, Yan Menga,*, Yuhan Suna,c,*

aCAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institution, Chinese Academy of Sciences, Shanghai, 201210, China
bUniversity of Chinese Academy of Sciences, Beijing 100049, China
cInstitute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China

Experimental section

Synthesis of ordered mesoporous carbon (H-OMC): H-OMC was synthesized through solid-phase synthesis route as following: 1.0 g of triblock copolymer Pluronic F127 was added in agate mortar (Ø 15 cm) at room temperature and ground into fine powder. Then 0.22 g of resorcinol was added and ground in the presence of F127. 0.40 g of terephthalaldehyde was added in 3 batches and the mixture was intensely ground with pestle for 5 minutes during which sticky polymer was formed. The sticky nanocomposite was placed in a quartz boat at 100 °C for 8 hours to obtain as-made product, which was finally carbonized in a tubular furnace at 600 °C for 3 h under nitrogen flow (flow rate of 100 mL/min) at the ramp of 1 °C/min. C-OMC, N-OMC, Mo-OMC and F-OMC were synthesized followed the same way, besides adding different amount kinds of precursors. All of the as-made samples were carbonized under nitrogen flow, unless the preparation of Mo-OMC, which was carbonized under hydrogen flow at 600 °C for 3 h (flow rate of 100 mL/min) at the ramp of 1 °C/min. The details of preparation of all samples were listed in Table S1.

Characterization

Small angle X-ray diffraction (XRD) patterns were taken on a Bruker D8 X-ray diffractometer with Ni-filtered Cu K\textalpha radiation (40 kV, 40 mA). The d-spacing values were calculated using the Braggs diffraction formula of 2d\textalpha sinθ.
\[n = \lambda, \text{ and the unit parameters } \lambda = 2d_{10}^{1/2} \text{ for OMC and } \lambda = d_{110}^{1/2} \text{ for cubic carbon of C-OMC.} \]

The \(\text{N}_2 \) adsorption-desorption isotherms were carried out at 77 K on a Micromeritics TriStar 3000 apparatus at -196 °C. Before analysis, the tested samples were degassed at 473 K for 6 hours under vacuum. The surface area was calculated by the Brunauer-Emmett-Teller (BET) method and the pore size distribution curve was calculated by the Barret-Joyner-Halenda (BJH) method using adsorption branch of the isotherms. And the total pore volumes \((V_t) \) were estimated from the adsorbed amount of nitrogen at a relative pressure \(P/P_0 \) of 0.995. The micropore volumes \((V_m) \) was calculated from the \(V-t \) plot method using the equation of \(V_m/\text{cm}^3 = 0.001547I \), where \(I \) represents the y intercepts in the \(V-t \) plots. The \(t \) values were calculated as a function of the relative pressure using the de Bore equation, \(t/\text{Å} = \left[13.99/(\log(P_0/P) + 0.0340)\right]^{1/2} \). Transmission electron microscopy (TEM) experiments were conducted on a JEOL 2011 microscope (Japan) operated at 200 kV.

The samples for TEM tests were suspended in ethanol and supported onto a holey carbon film on a Cu grid.
Table S1. Preparation conditions of H-OMC, C-OMC, N-OMC, Mo-OMC and F-OMC nanocomposites prepared through solid-phase synthesis method

<table>
<thead>
<tr>
<th>Sample</th>
<th>F127/g</th>
<th>Resorcinol/g</th>
<th>Terephthalaldehyde/g</th>
<th>Melamine/g</th>
<th>Mo source/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-OMC</td>
<td>0.62</td>
<td>0.22</td>
<td>0.40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C-OMC</td>
<td>0.41</td>
<td>0.22</td>
<td>0.40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N-OMC</td>
<td>1.50</td>
<td>0.44</td>
<td>0.56</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>Mo-OMC</td>
<td>0.62</td>
<td>0.22</td>
<td>0.40</td>
<td>-</td>
<td>0.030</td>
</tr>
<tr>
<td>F-OMC</td>
<td>0.62</td>
<td>0.44</td>
<td>0.49</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*a Melamine served as N source.

*b Phosphomolybdic acid served as Mo source and the nominal content of Mo was ~5 wt%.

*c Nitrogen content determined by elemental analysis.

*d Content of MoC determined by XPS.

*e Formaldehyde was used as monomer instead of terephthalaldehyde.
Figure S1. SAXS patterns of (A) as-made H-OMC and H-OMC, (b) as-made C-OMC and C-OMC. The patterns were acquired on a Nanostar U small-angle X-ray scattering system using Cu Kα radiation.
Figure S2. BJH pore size distribution of H-OMC (a), C-OMC (b), N-OMC (c), Mo-OMC (d), and F-OMC (e) prepared via solvent-free synthesis method.
Figure S3. TG (A) and DTG (B) curves for H-OMC (black line) and C-OMC (red line). The measurements were carried out on a Mettler Toledo TGA/SDTA851 analyzer from 40°C to 800°C under argon with a rate of 5°C min⁻¹.
Figure S4. Raman spectra of H-OMC (red line) and background of glass slide (black line). The Raman spectra showed two broad band at 1317 and 1562 cm$^{-1}$, assigned to the D band and G band, respectively, suggesting an amorphous carbon framework.
Figure S5. XPS spectra of N-OMC.
Figure S6. Wide-angle X-ray diffraction patterns of nanocomposites of Mo-OMC.
Figure S7. XPS spectra of Mo-OMC.
Figure S8. Small angle XRD pattern of H-OMC with a large amount of more than 10 g in one-pot.