Supporting information

A Novel SnS\textsubscript{2}@Graphene Nanocable Network for High-Performance Lithium Storage

Debin Konga,b,c, Haiyong Heb, Qi Songb, Bin Wangb, Quan-Hong Yanga,c,* and Linjie Zhia,b,c,*

[*] School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China)
b National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190 (China)
c The Synergistic Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072 (China)

E-mail: zhilj@nanoctr.cn, qhyangcn@tju.edu.cn

Figure S1. (a) Dark field transmission electron microscopy image. (b) Carbon, Tin and sulfur elemental mapping of a selected area of an individual SnS\textsubscript{2}@GT. Scale bar, 100 nm.

Figure S2. Cyclic voltammetry (CV) behavior of SnS\textsubscript{2}@GT.
Figure S3. TGA of as-prepared SnS$_2$@GT. The SnS$_2$ content estimated from the thermal analysis was ca. 71.6 wt % (Note: SnS$_2$ had been oxidized into SnO$_2$). The analysis was taken in air using a heating rate of 10°C min$^{-1}$. The weight loss from room temperature to 200°C was due to the removal of physisorbed and chemisorbed water.

Figure S4. EIS of SnS$_2$@GT and SnS$_2$-T