Supporting Information

Dumitru Sirbu, Constantin Turta, Andrew C. Benniston, Fawzi Abou-Chahine, Helge Lemmetyinen, Nikolai V. Tkachenko, Christopher Wood and Elizabeth Gibson

S1. Computer calculated structures for F3P showing the bow in the porphyrin ring. Top B3LYP (3-21G*), middle B3LYP (LanL2DZ), bottom B3PW91 (6-31G(d)). Groups are omitted for clarity.

S2. Selected molecular orbitals for F3P calculated by DFT (B3LYP) and using the 3-21G* basis set.

S3. Selected molecular orbitals for F3P calculated by DFT (B3LYP) and using the LanL2DZ basis set.

S4. DFT calculated electron density map for F3P using B3PW91 and a 6-31G(d) basis set.

S5. Cyclic voltammogram for F3P in THF (0.2 M TBATFB) at a glassy carbon working electrode. Scan rate = 50 mV s⁻¹.

S6. Time resolved transient absorption spectra of F3P attached to TiO₂ (top), and transient absorption decay profiles at three selected wavelengths (top). Symbols are experimental data and curves are the data fits.

S7. Decay component spectra for ZnTPP supported on TiO₂. Excitation wavelength is 550 nm.
S1. Computer calculated structures for F3P showing the bow in the porphyrin ring. Top B3LYP (3-21G*), middle B3LYP (LanL2DZ), bottom B3PW91 (6-31G(d)). Groups are omitted for clarity.
S2. Selected molecular orbitals for F3P calculated by DFT (B3LYP) and using the 3-21G* basis set.
S3. Selected molecular orbitals for F3P calculated by DFT (B3LYP) and using the LanL2DZ basis set.
S4. DFT calculated electron density map for F3P using B3PW91 and a 6-31G(d) basis set.
S5. Cyclic voltammogram for F3P in THF (0.2 M TBATFB) at a glassy carbon working electrode. Scan rate = 50 mV s$^{-1}$.
S6. Time resolved transient absorption spectra of F3P attached to TiO₂ (top), and transient absorption decay profiles at three selected wavelengths (top). Symbols are experimental data and curves are the data fits.
S7. Decay component spectra for ZnTPP supported on TiO₂. Excitation wavelength is 550 nm.