Synthesis of ZnO/Au and ZnO/Ag Nanoparticles and Their Photocatalytic Application Using UV and Visible Light

Pragati Fageria, Subhashis Gangopadhyay§, and Surojit Pande*

Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
E-mail: spande@pilani.bits-pilani.ac.in
surojitpande@gmail.com
Tel.: +91-1596 515709. Fax: +91-1596 244183

§Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
Figure S1. EDS Spectrum of ZnO/Au (a) and ZnO/Ag nanoparticles (b)
Figure S2. (a) High-resolution X-ray Photoelectron spectrum of Zn and (b) High-resolution X-ray Photoelectron spectrum of O
Figure S3. FESEM image of ZnO nanoparticles synthesized without CTAB, agglomerated particles of ZnO
Figure S4. FESEM image of ZnO/Au using Sodium borohydride (non-uniform deposition of Au nanoparticles)
Figure S5. (a) Degradation of MB dye in presence of ZnO/Ag nanoparticles under visible light and (b) $A/t/A_0$ vs. time (min) plot
Figure S6. Degradation of MB dye in presence of ZnO, ZnO/Au, and ZnO/Ag nanoparticles under dark condition.
Figure S7 Decomposition of phenol using ZnO/Ag under irradiation with visible light
Figure S8. (a) Degradation of MB dye in presence of ZnO nanoparticles under UV light and (b) $\ln \frac{A_t}{A_0}$ vs. time (min) plot
Figure S9. (a) Degradation of MB dye in presence of ZnO/Au nanoparticles under UV light and (b) ln A_t/A_o vs. time (min) plot.
Figure S10. (a) Degradation of MB dye in presence of ZnO/Ag nanoparticles under UV light and (b) A_t/A_o vs. time (min) plot.
Figure S11. Comparative study using ZnO/Au (a), ZnO, and ZnO/Ag (b)
Figure S12. Powder X-ray diffraction (PXRD) patterns of ZnO, ZnO/Au, and ZnO/Ag nanoparticles after reusability of catalyst.
Figure S13. Reusability test with ZnO/Au and ZnO/Ag nanoparticles using UV light