Supporting Information

d-glucosamine as a green ligand for copper catalyzed synthesis of aryl sulfones from aryl halides and sulfinic acid salts

Ming Yang, Hongyun Shen, Yuanyuan Li, Chao Shen, and Pengfei Zhang

1 College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036 China
2 College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China

1. General Information ... S2
2. Experimental Section .. S2
3. Characterization of the Products .. S3
4. References .. S23
1. General Information

The starting materials were commercially available and were used without further purification except solvents. The products were isolated by column chromatography on silica gel (200-300 mesh) using petroleum ether (60-90°C) and ethyl acetate. Melting points were determined on an X-5 Data microscopic melting point apparatus. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance 400 spectrometer at ambient temperature with CDCl₃ or DMSO-d₆ as solvent unless otherwise noted and tetramethylsilane (TMS) as the internal standard. ¹H NMR data were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = double-doublet, m = multiplet and br = broad), coupling constant (J values, Hz). ¹³C NMR data were reported in terms of chemical shift (δ ppm). Mass spectra (EI-MS) were acquired on an Agilent 5975 spectrometer. Analytical thin layer chromatography (TLC) was performed on Merk precoated TLC (silica gel 60 F254) plates.

2. Experimental Section

General Procedure for CuI-Catalyzed Coupling of Aryl Halides and Sodium Benzenesulfonate. A mixture of aryl halide (1 mmol), sodium benzenesulfonate (1.2 mmol), copper iodide (0.1 mmol), D-glucosamine(0.2 mmol), and 4 mL of DMSO-H₂O (1:1) in a sealed tube was heated to 100 °C under air. The cooled mixture was partitioned between ethyl acetate and water. The organic layer was separated, and the aqueous layer was extracted with ethylacetate twice. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. After drying with anhydrous MgSO₄ overnight, the liquid was analyzed by GC-MS. The residue was concentrated under reduced pressure to afford the desired product without further purification. All compounds were characterized by ¹H NMR, ¹³C NMR and mass spectroscopy, which are consistent with those reported in the literature.
General procedure for the catalyst recycling experiment.

To check if the catalyst is recyclable, the C-S coupling reaction was repeated five times with the same catalyst sample, which was recovered after each reaction. After completion of the reaction under the optimal conditions reaction, a simple filtration was sufficient to separate the catalyst solution from the products when the reaction was cool down. The catalyst was washed with ethyl acetate twice and was dried for 6 h at 75 °C. Then the separated catalyst was recharged with fresh substrate for the next run under the same reaction conditions.

3. Characterization of the Products

1-(4-Methoxyphenylsulfonyl)benzene 3a1:

\[
\begin{align*}
\text{white solid; mp } & 90-91 \degree C; \\
^1H \text{ NMR (400 MHz, CDCl}_3\text{): } \delta & 7.85-7.80 (m, 4H), 7.47-7.41 (m, 3H), 6.90-6.88 (m, 2H), 3.77 (s, 3H), \\
^{13}C \text{ NMR (100 MHz, CDCl}_3\text{): } \delta & 162.37, 141.35, 132.09, 128.89, 128.19, 126.31, 113.51, \\
& 54.64. \text{GC-MS (EI) } [M]^+: m/z \text{ calcd. for C}_{13}H_{12}O_3S: 248.0, \text{ found: 248.}
\end{align*}
\]

1-(p-Tolylsulfonyl)benzene 3b2:

\[
\begin{align*}
\text{white solid; mp } & 125-127 \degree C; \\
^1H \text{ NMR (400 MHz, CDCl}_3\text{): } \delta & 7.87-7.85 (m, 2H), 7.77-7.75 (m, 2H), 7.48-7.42 (m, 3H), 7.22 (d, J = 8.0 Hz, 2H), \\
& 2.32 (s, 3H).^{13}C \text{ NMR (100 MHz, CDCl}_3\text{): } \delta 143.15, 140.90, 137.56, 131.98, 128.89, \\
& 128.20, 126.68, 126.46, 20.55. \text{GC-MS (EI) } [M]^+: m/z \text{ calcd. for C}_{13}H_{12}O_2S: 232.0, \\
& \text{found: 232.}
\end{align*}
\]

4-(Benzenesulfonyl)phenol 3c3:

\[
\begin{align*}
\text{brown solid; mp } & 135-137 \degree C; \\
^1H \text{ NMR (400 MHz, CDCl}_3\text{): } \delta & 6.51 (br s, 1H), 6.92 (d, J = 8.0 Hz, 2H), 7.56-7.47 (m, 3H), 7.82 (d, J = 8.0 Hz, 2H),
\end{align*}
\]
7.91 (d, $J = 8.0$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$): δ 159.27, 131.84, 129.13, 128.18, 126.28, 115.08. GC-MS (EI) $[M]^+$: m/z calcd. for C$_{12}$H$_{10}$O$_3$S: 234.0, found: 234.

1-(4-Chlorophenylsulfonyl)benzene 3d1:

white solid; mp 96-97 °C. 1H NMR (400 MHz, CDCl$_3$): δ 7.95-7.88 (m, 4H), 7.58-7.46 (m, 5H). 13C NMR (100 MHz, CDCl$_3$): δ 141.09, 140.05, 139.85, 133.47, 129.60, 129.42, 129.10, 127.60. GC-MS (EI) $[M]^+$: m/z calcd. for C$_{12}$H$_9$ClO$_2$S: 252.0, found: 252.

1-(4-Nitrophenylsulfonyl)benzene 3e1:

yellow solid; mp 143-145 °C. 1H NMR (400 MHz, CDCl$_3$): δ 8.36-8.34 (m, 2H), 8.15-8.13 (m, 2H), 7.99-7.97 (m, 2H), 7.67-7.63 (m, 1H), 7.58-7.55 (m, 2H). 13C NMR (100 MHz, CDCl$_3$): δ 150.33, 147.36, 139.87, 134.15, 129.71, 128.99, 128.05, 124.55. GC-MS (EI) $[M]^+$: m/z calcd. for C$_{12}$H$_9$NO$_4$S: 263.0, found: 263.

1-(Trifluoromethyl)-4-(phenylsulfonyl)benzene 3f1:

white solid; mp 90-91 °C. 1H NMR (400 MHz, CDCl$_3$): δ 8.07 (d, $J = 4$ Hz, 2H), 7.97-7.96(m, 2H), 7.76 (d, $J = 4$ Hz, 2H), 7.62-7.52 (m, 3H). 13C NMR (100 MHz, CDCl$_3$): δ 145.30, 140.65, 135.00, 134.70, 133.70, 129.53, 128.21, 127.91, 126.45, 126.42. GC-MS (EI) $[M]^+$: m/z calcd. for C$_{13}$H$_9$F$_3$O$_2$S: 286.0, found: 286.

1-(4-(phenylsulfonyl)phenyl)ethanone 3g3:
3-Nitro-(phenylsulfonyl)benzene 3h:

\[
\text{O} \quad \text{O} \\
\text{N} \quad \text{S}
\]

yellow solid; mp 163-165 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.71 (s, 1H), 8.35 (d, \(J = 8.2\) Hz, 1H), 8.22 (d, \(J = 7.8\) Hz, 1H), 7.93 (d, \(J = 7.5\) Hz, 2H), 7.67 (t, \(J = 8.0\) Hz, 1H), 7.58 (t, \(J = 7.4\) Hz, 1H), 7.50 (t, \(J = 7.5\) Hz, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 147.3, 142.9, 139.0, 133.0, 132.0, 129.7, 128.7, 126.9, 126.6, 121.9. GC-MS (EI) [M]+: m/z calcd. for C\(_{12}\)H\(_9\)NO\(_4\)S: 263.0, found: 263.

1-Methyl-2-(phenylsulfonyl)benzene 3i:

\[
\text{CH}_3
\]

white solid; mp 73-75 °C. \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 8.21 (dd, \(J = 1, 1\) Hz, 1H), 7.87-7.85 (m, 2H), 7.58-7.55 (m, 1H), 7.51-7.46 (m, 3H), 7.41-7.38 (m, 1H), 7.26-7.22 (m, 1H), 2.44 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 141.41, 138.92, 138.01, 133.57, 132.97, 132.66, 129.45, 129.00, 127.65, 126.46, 20.16. GC-MS (EI) [M]+: m/z calcd. for C\(_{13}\)H\(_{12}\)O\(_2\)S: 232.0, found: 232.

Methyl 2-(phenylsulfonyl)benzoate 3j:

\[
\text{COOH}_3
\]

white solid; mp 73-75 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.18-8.16 (m, 1H), 8.00-7.98 (m, 2H), 7.66-7.52 (m, 6H), 3.94 (s, 3H). \(^{13}\)C NMR (100 MHz,
CDCl₃: δ 167.72, 141.41, 138.90, 133.40, 133.32, 133.19, 131.00, 130.23, 129.26, 129.00, 127.79, 53.11. GC-MS (EI) [M]+: m/z calcd. for C₁₄H₁₂O₄S: 276.0, found: 276.

1-(Phenylsulfonyl)benzene 3k⁴:

![Chemical structure](image)

white solid; mp 122-124 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.95 (d, J = 7.6Hz, 4H), 7.56 (t, J = 7.4Hz, 2H), 7.50 (t, J = 7.6Hz, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 141.69, 133.15, 129.26, 127.67. GC-MS (EI) [M]+: m/z calcd. for C₁₂H₁₀O₂S: 218.0, found: 218.

4-(methanesulfonyl)benzene 3l⁴:

![Chemical structure](image)

white solid; mp 90-91 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.95-7.94 (m, 2H), 7.67-7.65 (m, 1H), 7.59-7.56 (m, 2H), 3.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 140.65, 133.68, 129.36, 127.28, 44.45. GC-MS (EI) [M]+: m/z calcd. for C₇H₈O₂S: 156.0, found: 156.

Zolimidine⁵:

![Chemical structure](image)

yellowish white solid; ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, J = 6.8 Hz, 1H), 8.15 (d, J = 8.5 Hz, 2H), 8.02 (s, 1H), 7.98 (d, J = 8.5 Hz, 2H), 7.71 (d, J = 9.1 Hz, 1H), 7.31 – 7.28 (m, 1H), 6.90-6.87 (m, 1H), 3.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.42, 142.68, 139.65, 138.65, 127.93, 126.75, 126.34, 126.04, 117.42, 113.58, 109.83, 44.57. GC-MS (EI) [M]+: m/z calcd. for C₁₄H₁₂N₂O₂S: 272.0, found: 272.
1-(4-Methoxyphenylsulfonyl)benzene 3a:

\[
\begin{array}{c}
\text{O} \\
\text{O} \\
\text{H}
\end{array}
\]

\(\text{H NMR:}\)

\(\text{\[\text{Graph of H NMR spectrum}\]}\)

\(\text{\[\text{Graph of C NMR spectrum}\]}\)

\(\text{\[\text{Graph of C NMR spectrum}\]}\)
1-(p-Tolylsulfonyl)benzene 3b:

\[\text{H}_3\text{C}-\begin{array}{c}
\text{S} \\
\text{O}
\end{array}-\begin{array}{c}
\text{O}
\end{array} \]

1HNMR:

13C NMR:
4-(Benzenesulfonyl)phenol 3c:

\[
\text{HO} - \begin{array}{c}
\text{S} \\
\text{O}
\end{array} - \begin{array}{c}
\text{O} \\
\text{S} \\
\text{O}
\end{array} - \begin{array}{c}
\text{O}
\end{array}
\]

\(^1\text{H NMR}\)

\[^{13}\text{C NMR}\]
1-(4-Chlorophenylsulfonyl)benzene 3d:

\[
\begin{array}{c}
\text{Cl} \\
\text{S} \\
\text{S} \\
\end{array}
\]

\(^1\text{H NMR}\)

\[^{13}\text{C NMR}\]
1-(4-Nitrophenylsulfonyl)benzene 3e:

\[
\overset{\text{O}}{\overset{\text{O}}{\text{O}}}_{\text{N}} - \overset{\text{O}}{\overset{\text{O}}{\text{O}}}_{\text{S}} \overset{\text{O}}{\overset{\text{O}}{\text{O}}}_{\text{N}}
\]

\text{^1H NMR}

\text{\^13C NMR}
1-(Trifluoromethyl)-4-(phenylsulfonyl)benzene 3f

\[\text{F}_3\text{C} - \begin{array}{c} \text{O} \\ \text{S} \end{array} - \text{Ph} \]

1H NMR
13C NMR

1-(4-phenylsulfonyl)phenyl)ethanone 3g:

1H NMR

13C NMR
3-Nitro-(phenylsulfonyl)benzene 3h:

![Chemical Structure of 3-Nitro-(phenylsulfonyl)benzene 3h]

^1H NMR
13C NMR

1-methyl-2-(phenylsulfonyl)benzene 3i:

1H NMR

13C NMR
Methyl 2-(phenylsulfonyl)benzoate 3j:

\[\text{H NMR} \]

\[\text{C NMR} \]
1-(Phenylsulfonyl)benzene 3k:

\[
\begin{align*}
\text{SO} & \quad \text{SO} \\
\end{align*}
\]

\(^1\text{H NMR}\)

\[
\begin{align*}
\text{13C NMR}
\end{align*}
\]
4-(methanesulfonyl)benzene 3l:

\[
\text{SO}_2\text{CH}_3
\]

\(^1\text{H NMR}\)
Zolimidine:
$\text{H} \ NMR$

$\text{C} \ NMR$

$\text{H} \ NMR$

$\text{C} \ NMR$
The selected GC-MS chromatogram of products:

1-(4-Methoxyphenylsulfonyl)benzene 3a:

\[\text{GC-MS (EI) } [M]^+: m/z \text{ calcd. for } C_{13}H_{12}O_3S: 248.0, \text{ found: 248.} \]

4-(Benzenesulfonyl)phenol 3c:
1-(Trifluoromethyl)-4-(phenylsulfonyl)benzene 3f:

\[
\begin{array}{c}
\text{F}_3\text{C} \quad & \quad \text{S} \\
\end{array}
\]

GC-MS (EI) [M]+: m/z calcd. for C\textsubscript{13}H\textsubscript{9}F\textsubscript{3}O\textsubscript{2}S: 286.0, found: 286.

1-Methyl-2-(phenylsulfonyl)benzene 3i:

\[
\begin{array}{c}
\text{S} \\
\end{array}
\]
GC-MS (EI) [M]+: m/z calcd. for C$_{13}$H$_{12}$O$_2$S: 232.0, found: 232.

1-(Phenylsulfonyl)benzene 3k:

GC-MS (EI) [M]+: m/z calcd. for C$_{12}$H$_{10}$O$_2$S: 218.0, found: 218.
4-(Methanesulfonyl)benzene 3l:

\[
\begin{array}{c}
\text{S} \\
\text{O} \\
\text{C} \\
\text{H}_3 \\
\end{array}
\]

GC-MS (EI) [M]+: m/z calcd. for C\textsubscript{7}H\textsubscript{8}O\textsubscript{2}S: 156.0, found: 156.

4. References:

5. C. He, J. Hao, H. Xu, Y.-P. Mo, H.-Y. Liu, J.-J. Han, A. Lei, *Chem. Commun.* 2012, 48, 11073;