Supporting Information

Metal ionic size directed complexation in manganese(II) coordination chemistry: Efficient candidates showing phenoxazinone synthase mimicking activity

Anangamohan Panja*,a

*a Postgraduate Department of Chemistry, Panskura Banamali College, Panskura RS, Purba Medinipur, West Bengal 721 152, India
E-mail: ampanja@yahoo.co.in

Content

Fig. S1. Packing diagram of complex 1
Fig. S2. Cyclic voltammogram of complex 2
Fig. S3. Time course plot for the oxidation of OAPH in presence of L¹ only and upon addition of complex 1
Fig. S4. Initial rate verses catalyst concentration plot
Fig. S5. Electrospray ionization mass spectrum of a mixture of 1 and OAPH.
Fig. S1. Molecular packing of 1 showing π–π stacking and hydrogen bonding interactions.
Fig. S2. Cyclic voltammogram of a 2 mM acetonitrile solution of 2 with a conventional three electrode system using a Pt working electrode, Pt auxiliary electrode and Ag/AgCl reference electrode in the presence of tetraethylammonium perchlorate (TEAP) as a supporting electrolyte at ambient temperature; scan rate: 100 mV s$^{-1}$.
Fig. S3. Rate of the oxidation of OAPH in presence of L1 (first phase) and its increase upon the addition of complex 1 (second phase). Rate measured spectrophotometrically by monitoring the increase of absorbance at 435 nm. First phase: [OAPH] = 0.02 mM, [L1] = 2 \times 10$^{-4}$ M; T = 25 °C. Second phase: [complex 1] = 2 \times 10$^{-4}$ M.
Fig. S4. The plots of initial rate verses catalyst concentration for the oxidation of o-aminophenol catalyzed by 1 and 2 in methanol. Symbols and solid lines represent the experimental and simulated profiles, respectively.
Fig. S5. Electrospray ionization mass spectrum (ESI-MS positive) of 1:50 mixture of complex 1 and OAPH in methanol after 10 min of mixing.