Electronic supplementary information

Synthesis of functional 4H-chromenes from phenols and acetophenones under solvent- and metal-free conditions

Hui-Jing Li,*a,b Kai Deng,a Dong-Hui Luo,a De-Hui Liu,a Jun-Li Wang,a Chun-Hua Lina and Yan-Chao Wu*a

*a School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, China
b Beijing National Laboratory for Molecular Sciences (BNLMS), and Key Laboratory of Molecular Recognition and Function, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China

*E-mails: lihuijing@iccas.ac.cn, ycwu@iccas.ac.cn

1. Table of Contents

1. Table of Contents .. S1
2. General Information ... S2
3. NMR spectra ... S3
3a. NMR spectra of 4H-chromene 3a–p S3
3b. NMR spectra of by-product 4a .. S35
3c. NMR spectra of chalcone 5c ... S37
2. General Information

Common reagents and materials were purchased from commercial sources and purified by recrystallization or distillation. Where necessary, organic solvents were routinely dried and/or distilled prior to use and stored over molecular sieves under argon. Organic extracts were, in general, dried over anhydrous sodium sulfate (Na$_2$SO$_4$). TLC plates were visualized by exposure to ultraviolet light (UV). Chemical shifts for protons are reported in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvents (CHCl$_3$: δ 7.26; DMSO-d_6: δ 2.50). Chemical shifts for carbon resonances are reported in parts per million (δ scale) downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl$_3$: δ 77.0; DMSO-d_6: δ 39.43). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant in Hertz (Hz), and integration.
3. NMR Spectra

3a. NMR spectra of 4H-chromene 3a–p

4H-Chromene 3a

1H NMR (300 MHz, CDCl$_3$)
$4H$-Chromene 3a

13C NMR (75 MHz, CDCl$_3$)
$4H$-Chromene 3b

1H NMR (300 MHz, CDCl$_3$)
$4H$-Chromene 3b

13C NMR (75 MHz, CDCl$_3$)
$4H$-Chromene 3c

^{1}H NMR (300 MHz, CDCl$_3$)
$4H$-Chromene 3c

13C NMR (75 MHz, CDCl$_3$)
4H-Chromene 3d

1H NMR (300 MHz, CDCl$_3$)
$4H$-Chromene 3d

13C NMR (75 MHz, CDCl$_3$)
4H-Chromene 3e

1H NMR (400 MHz, CDCl$_3$)
$4H$-Chromene 3e

13C NMR (100 MHz, CDCl$_3$)
$4H$-Chromene 3f

1H NMR (400 MHz, CDCl$_3$)
$4H$-Chromene $3f$

13C NMR (100 MHz, CDCl$_3$)
4H-Chromene 3g

\(^1\)H NMR (400 MHz, CDCl\(_3\))
$4H$-Chromene $3g$

13C NMR (100 MHz, CDCl$_3$)
4H-Chromene 3h

1H NMR (400 MHz, CDCl$_3$)
4H-Chromene 3h

13C NMR (100 MHz, CDCl$_3$)
4H-Chromene 3i

1H NMR (400 MHz, CDCl₃)
$4H$-Chromene 3i

13C NMR (100 MHz, CDCl$_3$)
$4H$-Chromene $3j$

1H NMR (400 MHz, CDCl$_3$)
$4H$-Chromene 3j

13C NMR (100 MHz, CDCl$_3$)
4H-Chromene 3k

1H NMR (400 MHz, CDCl$_3$)
4H-Chromene 3k

13C NMR (100 MHz, CDCl$_3$)
4H-Chromene 31

1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)
$4H$-Chromene $3m$

1H NMR (400 MHz, CDCl$_3$)
$4H$-Chromene 3m

13C NMR (100 MHz, CDCl$_3$)
$4H$-Chromene 3n

1H NMR (400 MHz, CDCl$_3$)
4H-Chromene 3n

13C NMR (100 MHz, CDCl$_3$)
$4H$-Chromene 30

1H NMR (400 MHz, CDCl$_3$)
4\textit{H}-Chromene 30

$^{13}\text{C} \text{NMR (100 MHz, CDCl}_3\text{)}$
$4H$-Chromene 3p

1H NMR (400 MHz, CDCl$_3$)
$4H$-Chromene 3p

$^{13}\text{C} \text{ NMR (100 MHz, CDCl}_3\text{)}$
3b. NMR spectra of by-product 4a

1H NMR (400 MHz, CDCl$_3$)
By-product 4a

\[^{13}\text{C} \text{ NMR (100 MHz, DMSO-}\text{d}_6\)]
3c. NMR spectra of chalcone 5c

1H NMR (400 MHz, CDCl$_3$)
Chalcone 5e

13C NMR (100 MHz, CDCl$_3$)