

Electronic Supplementary Information

MnO₂ nanoflakes grown on 3D graphite network for enhanced electrocapacitive performance

Xiuxia Sun,^a Huanjing Wang,^a Zhibin Lei,^a Zonghuai Liu,^a Lingling Wei^{b**}

^aSchool of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China, Email: zblei@snnu.edu.cn; Tel: 86-29-81530810; Fax: 86-29-81530702

^bSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang’an Street, Xi'an, Shaanxi, 710119, China, Email: weill@snnu.edu.cn;

*Corresponding Authors:
Prof. Zhibin Lei, School of Materials Science and Engineering, Shaanxi Normal University, 199 South Chang’an Road, Xi’an, Shaanxi, 710062, China. Email: zblei@snnu.edu.cn; Tel: 86-29-81530810; Fax: 86-29-81530702

Dr. Lingling Wei, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang’an Street, Xi’an, Shaanxi, 710119, China, Email: weill@snnu.edu.cn
Fig. S1 SEM image of 3D Ni foam.
Fig. S2. EDX spectrum of MnO$_2$-3DG-23% recorded in the selected area of Fig. 4d.

Fig. S3. The dependence of discharged current density at potential of 0.5 V (vs Ag/AgCl) on the scan rate for 3DG-MnO$_2$-13% electrode.
Fig. S4 The last 10 cycles of galvanostatic charge-discharge curves of 3DG-MnO$_2$-23% electrode at constant current density of 4.0 A/g in 1.0 mol/L Na$_2$SO$_4$ aqueous electrolyte.

Fig. S5 CV and galvanostatic charge-discharge profile of two-electrode capacitor constructed with 3DG-MnO$_2$-13% as the symmetric electrode.