Oxalate capped Iron Nano: From Methylene blue degradation to Bis(indolyl)methane synthesis

Rupa Pegu, Krishna Joyti Majumdar, Dhruba Joyti Talukdar, and Sanjay Pratihar*
spratihar@tezu.ernet.in, spratihar29@gmail.com

†Department of Chemical Sciences, Tezpur University, Napaam, 784028, Assam, India
Fig. S1. UV-vis spectrum of Fe(ox)-Fe0, before and after the oxidation.

Fig. S2. Band gap value of Fe(ox)-Fe$_3$O$_4$.
Fig. S3. Band gap value of Fe$_3$O$_4$.
Fig. S4. Synthetic procedure of Fe(ox)-Fe⁰.
Characterization of Oxidized product (Reddish-Brown Material)

Fig. S5. TEM, particle distribution, and SAED pattern of Fe₃O₄.
Fig. S6. TEM, particle distribution, and SAED pattern of Fe(ox)-Fe0.
Table S1 condensation reaction between aldehyde and indoles in water

<table>
<thead>
<tr>
<th>#</th>
<th>R</th>
<th>R'</th>
<th>Product</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Br</td>
<td>H</td>
<td>1c</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>H</td>
<td>1b</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>NO2</td>
<td>Br</td>
<td>1g</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Me</td>
<td>OMe</td>
<td>1h</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td>OMe</td>
<td>1j</td>
<td>6</td>
<td><5</td>
</tr>
</tbody>
</table>

Involvement of Fe(ox)-Fe₃O₄ as a catalyst in the condensation reaction between aldehydes and indoles:

There are several different possible modes of coordination of carbonyl group to metal catalysts. Mainly four types of coordination modes of aldehyde have been proposed (scheme 1).¹

Scheme 1. Possible coordination mode of aldehyde with metal catalyst

It is expected that after binding of C=O to metal catalyst, there must be a shift in both the C=O and C-H stretching band of aldehyde as compared to free aldehyde. The material was prepared for the study by grinding the 1:1 mixture of aldehyde and catalyst in a motor pestle for 0.5 h. The two material; Fe₃O₄ and Fe(ox)-Fe₃O₄ was chosen for the study. The FTIR spectra of free 4-bromo benzaldehyde (2a) shows two peaks at 2763 and 2855 cm⁻¹ due to C-H stretching vibration and another two peaks at 1693 and 1577 cm⁻¹ due the C=O stretching vibration of 2a. In the mixture of 2a and Fe(ox)-Fe₃O₄, the C-H stretching vibration at 2763 cm⁻¹ of 2a shifted to lower wavenumber, which indicates the binding of 2a with Fe(ox)-Fe₃O₄ catalyst (Fig. S7). On the other hand the C=O stretching vibration at 1693 for free 2a also shifted to lower wavenumber in the mixture of 2a and Fe(ox)-Fe₃O₄ sample (Fig. S8), which also suggested the interaction of
2a with Fe(ox)-Fe$_3$O$_4$. In case of Fe$_3$O$_4$ material, less shift of C=O and C-H stretching vibration was observed as compared to Fe(ox)-Fe$_3$O$_4$.

Fig. S7. FTIR spectra of 4-bromo benzaldehyde (C-H stretching band) on Fe$_3$O$_4$ and Fe(ox)-Fe$_3$O$_4$.
Fig. S8. FTIR spectra of 4-bromo benzaldehyde (C-O stretching band) on Fe$_3$O$_4$ and Fe(ox)-Fe$_3$O$_4$.
Fig. S9. FTIR spectra of 4-bromo benzaldehyde on Fe(ox)-Fe$_3$O$_4$.

Fig. S10. FTIR spectra of 4-bromo benzaldehyde on Fe$_3$O$_4$.
Fig S11. FTIR spectra of Fe\textsubscript{3}O\textsubscript{4}.

Fig S12. FTIR spectra of Fe(ox)-Fe\textsubscript{3}O\textsubscript{4}.
Fig S13. Absorbance versus wavelength plot of Fe(ox)-Fe₃O₄ promoted reaction of methylene blue in dark.

Fig S14. Degradation (%) versus time plot of Fe(ox)-Fe₃O₄ promoted reaction of methylene blue in dark.
Fig S15. 1H and 13C NMR spectrum of compound 1a in acetone-d$_6$.
Fig S16. 1H and 13C NMR spectrum of compound 1b in acetone-d$_6$.
Fig S17. 1H and 13C NMR spectrum of compound 1c in DMSO-d$_6$
Fig S18. 1H and 13C NMR spectrum of compound 1d in Acetone-d_6.
Fig S19. 1H and 13C NMR spectrum of compound 1e in Acetone-d$_6$
Fig S20. 1H and 13C NMR spectrum of compound 1f in Acetone-d$_6$
Fig S21. 1H and 13C NMR spectrum of compound 1g in Acetone-d$_6$.
Fig S22. 1H and 13C NMR spectrum of compound 1h in Acetone-d$_6$.
Fig S23. 1H and 13C NMR spectrum of compound 1i in Acetone-\textit{d}_6.
Fig S24. 1H and 13C NMR spectrum of compound 1j in Acetone-d$_6$.

References: