Synthesis and inclusion behaviour of a heterotritopic receptor based on hexahomotrioxacalix[3]arene

Cheng-Cheng Jin, a Hang Cong, a Xin-Long Ni, b Xi Zeng, b Carl Redshaw c and Takehiko Yamato * a

a Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga-shi, Saga 840-8502, Japan
b Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
 c Department of Chemistry, The University of Hull, Cottingham Road, Hull, Yorkshire, HU6 7RX, UK

Contents (P1 to P12 are the page numbers)

P1 – Title, authors and description of supporting information content.
P2 – Figure S1. 1H NMR spectrum of cone-7 (300 MHz, CDCl3, 298 K).
P3 – Figure S2. 13C NMR spectrum of cone-7 (75 MHz, CDCl3, 298 K).
P4 – Figure S3. Mass spectra of cone-7.
P5 – Figure S4. UV-vis absorption spectra of cone-7 with various tested metals.
P5 – Figure S5. Partial 1H NMR titration of cone-7 ⊃ K+ complex.
P6 – Figure S5’. Partial 1H NMR titration of cone-7 ⊃ Ag+; K+ ⊂ [cone-7 ⊃ Ag+] complex.
P7 – Figure S6. Partial 1H NMR titration of cone-7 ⊃ Cs+ complex.
P8 – Figure S7. Partial 1H NMR titration of cone-7 ⊃ Li+; Ag+ ⊂ [cone-7 ⊃ Li+] complex.
P9 – Figure S8. Partial 1H NMR titration of Na+ ⊂ {Li+ ⊂ [cone-7 ⊃ Ag+]} complex.
P10 – Figure S9. Job’s plot of the extractions of Li+ with host cone-7.
P10 – Figure S10. Molar ratio of Na+ with host cone-7.
P11 – Figure S11. Bensei-Hilderbrand plot of cone-7 for various concentrations of Ag+ based on UV-vis spectrum.
P11 – Figure S12. Bensei-Hilderbrand plot of cone-7 for varous concentrations of Li+ based on UV-vis spectrum.
P12 – Figure S13. Bensei-Hilderbrand plot of cone-7 for varous concentrations of Na+ based on UV-vis spectrum.
Figure S1. 1H NMR spectrum of cone-7 (300 MHz, CDCl$_3$, 298 K).
The corresponding chemical shifts were marked on the 1H NMR spectrum.
Figure S2. 13C NMR spectrum of cone-7 (75MHz, CDCl$_3$, 298 K).
Figure S3. Mass spectra of cone-7 in CH$_2$Cl$_2$.
Figure S4. UV-vis absorption spectra response of cone-7 (1 × 10^{-6} M) in CH2Cl2-CH3CN (10:1, v/v) to 1 × 10^{-5} M various tested metal ions. λ_{max} = 290 nm, ε = 1.89 × 10^5 cm^{-1} M^{-1}.
Figure S5. Partial 1H NMR titration of $cone$-7/guest complex (H/G = 1:1); a) free $cone$-7; b) $cone$-7 ⊃ K^+; Solvent: CDCl$_3$/CD$_3$CN(10:1, v/v).

Figure S5’. Partial 1H NMR titration of $cone$-7/guest complex (H/G = 1:1); a) free $cone$-7; b) $cone$-7 ⊃ Ag^+; c) KClO$_4$ ⊂ [$cone$-7 ⊃ Ag^+]; Solvent: CDCl$_3$/CD$_3$CN(10:1, v/v).

1H NMR titration experiments of $cone$-7 with K^+ ions were conducted. An equivalent of KClO$_4$ was added to the solution of $cone$-7 in the absence and presence of Ag^+ ion; no obvious chemical shift of $cone$-7 was observed.
Figure S6. Partial 1H NMR titration of cone-7/guest complex (H/G = 1:1); a) free cone-7; b) cone-7 ⊃ Cs$^+$. Solvent: CDCl$_3$/CD$_3$CN(10:1, v/v).

1H NMR titration experiments of cone-7 with Cs$^+$ ions were conducted. An equivalent of CsClO$_4$ was added to the solution of cone-7 in the absence of Ag$^+$ ion; no obvious chemical shift of cone-7 was observed.
Figure S7. Partial 1H NMR titration of cone-7/guest complex (H/G = 1:1); a) free cone-7; b) cone-7 ⊃ Li$^+$; c) AgClO$_4$ ⊂ [cone-7 ⊃ Li$^+$]; Solvent: CDCl$_3$/CD$_3$CN(10:1, v/v).

After changing the binding sequence of metal ions, first to form the complex cone-7 ⊃ Li$^+$ then to form the complex AgClO$_4$ ⊂ [cone-7 ⊃ Li$^+$], we observed the same 1H NMR spectrum as shown in Figure S7c and Figure 3c was observed. This was consistent with the cone-hexahomotrioxacalix[3]arene triamide derivatives cone-7 serving as heteroditopic receptors for Ag$^+$ and Li$^+$ simultaneously.
Figure S8. Partial 1H NMR titration of cone-7/guest complex (H/G = 1:1); a) free cone-7; b) cone-7 \supset AgClO$_4$; c) LiClO$_4$ \subset [cone-7 \supset Ag$^+$]; d) Na$^+$ \subset {Li$^+$ \subset [cone-7 \supset Ag$^+$]}; Solvent: CDCl$_3$/CD$_3$CN (10:1, v/v).

We observed the same 1H NMR spectrum after changing the binding sequence of metal ions as shown in Figure S8d and Figure 6d, which was consistent with the cone-hexahomotrioxacalix[3]arene triamide derivatives cone-7 serving as heterotritopic receptors for Ag$^+$, Li$^+$ and Na$^+$ ions simultaneously.
The stoichiometry of the *cone*-7 complexes with Li$^+$ was also determined by UV-vis absorption spectrum (CH$_2$Cl$_2$/CH$_3$CN), using the continuous variation method; the absorption reached a maximum at 0.5 mol fraction for this cation, indicating that Li$^+$ forms a 1:1 complex with *cone*-7.

Figure S10. Molar ratio of Na$^+$ with host *cone*-7.
Figure S11. Bensei-Hilderbrand plot of *cone-7* for various concentrations of Ag⁺ at 298 K. The association constant \((K_a)\) was calculated to be \(2.24 \times 10^5\) M⁻¹.

Figure S12. Bensei-Hilderbrand plot of *cone-7* for various concentrations of Li⁺ at 298 K. The association constant \((K_a)\) was calculated to be \(2.58 \times 10^5\) M⁻¹.
Figure S13. Bensei-Hilderbrand plot of *cone-7* for various concentrations of Na$^+$ at 298 K. The association constant (K_a) was calculated to be 1.55×10^5 M$^{-1}$.

The plot is shown with the equation $y = 1E-04x + 15.517$ and the association constant $K_a = 1.55 \times 10^5$ (±1536), with a $R^2 = 0.9926$.

The diagonal line represents the linear relationship between the reciprocal of Na$^+$ concentration and the observed absorbance difference. The linear equation $y = 1E-04x + 15.517$ is derived from the data, indicating a slight positive deviation from the expected linear fit, as evidenced by the R^2 value of 0.9926.