IN VITRO EVALUATION OF COPPER-CHELATING PROPERTIES OF FLAVONOIDS

SUPPLEMENTARY DATA

6 pages

Michal Říha, Jana Karlíčková, Tomáš Filipský, Kateřina Macáková, Liliana Rocha, Paolo Bovicelli, Ilaria Proietti Silvestri, Luciano Saso, Luděk Jahodář, Radomír Hrdina and Přemysl Mladěnka*

*Corresponding author:

Assoc. Prof. Přemysl Mladěnka, Ph.D.

Department of Pharmacology and Toxicology

Faculty of Pharmacy in Hradec Králové

Charles University in Prague

Heyrovského 1203
Fig. S1 Chemical structures of the tested flavonoids. Glc: glucose, Glu: glucuronic acid, Rha: rhamnose.
Fig. S2 The representative examples of stable (trientine, baicalein) and unstable (baicalin, troxerutin) copper-chelator complexes, evaluated by the hematoxylin method. The values express mean percent relative stability of flavonoids at all tested pH conditions and that of trientine at pH 6.8 and 7.5 due to instability of its complexes under acidic conditions.
Fig. S3 The chelation of cuprous ions by flavonoids, compared with trientine, at the ratios of 1:1 (A) and 10:1 (B) (flavonoid:copper). * Less potent than trientine, † more potent than trientine (p < 0.05).
Fig. S4 The comparison of cupric chelation properties of baicalein and 3-hydroxyflavone according to the pH conditions: pH 7.5 (A), 6.8 (B), 5.5 (C), and 4.5 (D). Different character of chelation curves was observed: while the chelation by baicalein reached a plateau at the concentration ratio of 1:1, flavonoid to copper, respectively, in most cases, the chelation of 3-hydroxyflavone increased up to 100% between the concentration ratios of 1:1 and 10:1.
Fig. S5 The relative stability of complexes compared with those of trientine. (A) Cupric ions, (B) cuprous ions, \(^a\) pH 6.8 and 7.5, \(^b\) pH 4.5 and 5.5. * Less stable than the complexes of trientine (\(p < 0.05\)).